SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonsdottir Ingibjorg S) "

Sökning: WFRF:(Jonsdottir Ingibjorg S)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrio, Isabel C., et al. (författare)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
2.
  •  
3.
  • Rheubottom, Sarah, I, et al. (författare)
  • Hiding in the background : community-level patterns in invertebrate herbivory across the tundra biome
  • 2019
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 42:10, s. 1881-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming in tundra ecosystems is proposed to result in increased invertebrate herbivory. However, empirical data about how current levels of invertebrate herbivory vary across the Arctic is limited and generally restricted to a single host plant or a small group of species, so predicting future change remains challenging. We investigated large-scale patterns of invertebrate herbivory across the tundra biome at the community level and explored how these patterns are related to long-term climatic conditions and year-of-sampling weather, habitat characteristics, and aboveground biomass production. Utilizing a standardized protocol, we collected samples from 92 plots nested within 20 tundra sites during summer 2015. We estimated the community-weighted biomass lost based on the total leaf area consumed by invertebrates for the most common plant species within each plot. Overall, invertebrate herbivory was prevalent at low intensities across the tundra, with estimates averaging 0.94% and ranging between 0.02 and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should increase plant losses to invertebrates in the tundra. However, most of the observed variation in herbivory was associated with other site level characteristics, indicating that other local ecological factors also play an important role. More details about the local drivers of invertebrate herbivory are necessary to predict the consequences for rapidly changing tundra ecosystems.
  •  
4.
  • Bokhorst, Stef Frederik, et al. (författare)
  • Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:1, s. 64-74
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year-round. In addition, their effects on temperature extremes and freeze-thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (-0.9 to 2.1 degrees C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R-2 = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC-induced changes in the frequency of freeze-thaw events included an increase in autumn and decreases in spring and summer. Frequency of high-temperature events in OTCs increased in spring, summer and autumn compared with non-manipulated control plots. Frequency of low-temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress) in combination with microclimate measurements at organism level.
  •  
5.
  • Elmendorf, Sarah C., et al. (författare)
  • Global assessment of experimental climate warming on tundra vegetation : heterogeneity over space and time
  • 2012
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 15:2, s. 164-175
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation and associated ecosystem consequences have the potential to be much greater than we have observed to date.
  •  
6.
  • Elmendorf, Sarah C., et al. (författare)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • Ingår i: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy