SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jourdan Jonas) "

Sökning: WFRF:(Jourdan Jonas)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baker, Nathan Jay, et al. (författare)
  • Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 758
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater ecosystems are dynamic, complex systems with a multitude of physical and ecological processes and stressors which drive fluctuations on the community-level. Disentangling the effects of different processes and stressors is challenging due to their interconnected nature. However, as protected areas (i.e. national parks) are less anthropogenically impacted, they are ideal for investigating single stressors. We focus on the Bavarian Forest National Park, a Long-Term Ecological Research (LTER) site in Germany, where the major stressors are climate warming, air pollution (i.e. acidification) and bark beetle infestations. We investigated the effects of these stressors on freshwater macroinvertebrates using comprehensive long-term (1983–2014) datasets comprising high-resolution macroinvertebrate and physico-chemical data from a near-natural stream. Macroinvertebrate communities have undergone substantial changes over the past 32 years, highlighted by increases in overall community abundance (+173%) and richness (+51.6%) as well as taxonomic restructuring driven by a disproportional increase of dipterans. Prior to the year 2000, regression analyses revealed a decline in sulphate deposition and subsequent recovery from historical acidification as potential drivers of the increases in abundance and richness rather than to increases in water temperature (1.5 °C overall increase). Post 2000, however, alterations to nutrient cycling caused by bark beetle infestations coupled with warming temperatures were correlated to taxonomic restructuring and disproportional increases of dipterans at the expense of sensitive taxa such as plecopterans and trichopterans. Our results highlight the challenges when investigating the effects of climate change within a multi-stressor context. Even in conservation areas, recovery from previous disturbance might mask the effects of ongoing disturbances like climate change. Overall, we observed strong community restructuring, demonstrating that stenothermal headwater communities face additional stress due to emerging competition with tolerant taxa. Conservation efforts should consider the temporal variability of communities and their recovery from disturbances to adequately identify species vulnerable to local or widespread extinction.
  •  
2.
  • Baranov, Viktor, et al. (författare)
  • Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years
  • 2020
  • Ingår i: Conservation Biology. - : John Wiley & Sons. - 0888-8892 .- 1523-1739. ; 34:5, s. 1241-1251
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species' phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25–30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long‐term data set on aquatic insects available, which includes weekly measurements of species‐level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42‐year period (1969–2010). Overall, water temperature increased by 1.88°C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short‐term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long‐term data in capturing the complex responses of communities toward climate change.
  •  
3.
  • Jourdan, Jonas, et al. (författare)
  • Effects of changing climate on European stream invertebrate communities : A long-term data analysis
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 621, s. 588-599
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10–32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
  •  
4.
  • Pilotto, Francesca, et al. (författare)
  • Diverging response patterns of terrestrial and aquatic species to hydromorphological restoration
  • 2019
  • Ingår i: Conservation Biology. - : John Wiley & Sons. - 0888-8892 .- 1523-1739. ; 33:1, s. 132-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10–164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15–120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy