SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jukic MM) "

Sökning: WFRF:(Jukic MM)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Jukic, MM, et al. (författare)
  • Functional characterization of CYP2D7 gene variants
  • 2018
  • Ingår i: Pharmacogenomics. - : Future Medicine Ltd. - 1744-8042 .- 1462-2416. ; 19:12, s. 931-936
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultrarapid CYP2D6 metabolizer (UM) phenotype is caused by CYP2D6 gene duplications in some, but not all, UM individuals. CYP2D6 and the adjacent pseudogene CYP2D7 are highly homologous; however, CYP2D7 harbors a premature stop codon, which is absent in carriers of the rare CYP2D7 variant rs530303678. We addressed whether rs530303678 could generate a functionally active protein, causing the UM phenotype. However, unlike CYP2D6 variants, two CYP2D7 rs530303678 variant isoforms, previously described in liver, showed neither significant protein expression nor catalytic activity toward the CYP2D6 substrates bufuralol or dextromethorphan. We conclude that loss of the stop codon in CYP2D7 does not result in the generation of enzymatically active protein in human liver and thus, cannot cause the UM phenotype.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Molden, E, et al. (författare)
  • CYP2D6 Reduced Function Variants and Genotype/Phenotype Translations of CYP2D6 Intermediate Metabolizers: Implications for Personalized Drug Dosing in Psychiatry
  • 2021
  • Ingår i: Frontiers in pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12, s. 650750-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic differences in cytochrome P450 (CYP)-mediated metabolism have been known for several decades. The clinically most important polymorphic CYP enzyme is CYP2D6, which plays a key role in the metabolism of many antidepressants and antipsychotics, along with a range of non-psychiatric medications. Dose individualization based on CYP2D6 genotype to improve the effect and safety of drug treatment has been an ambition for a long time. Clinical use of CYP2D6 genotyping is steadily increasing; however, for pre-emptive genotyping to be successful in predicting individual dose requirements, high precision of genotype-to-phenotype translations are required. Recently, guidelines for assigning CYP2D6 enzyme activity scores of CYP2D6 variant alleles, and subsequent diplotype-to-phenotype translations, were published by the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group. Consensus on assigning activity scores of CYP2D6 variant alleles and translating diplotype scores into CYP2D6 poor, intermediate, normal, or ultrarapid metabolizer groups were obtained by consulting 37 international experts. While assigning enzyme activities of non-functional (score 0) and fully functional (score 1) alleles are straightforward, reduced function variant alleles are more complex. In this article, we present data showing that the assigned activity scores of reduced function variant alleles in current guidelines are not of sufficient precision; especially not for CYP2D6*41, where the guideline activity score is 0.5 compared to 0.05–0.15 in pharmacogenetic studies. Due to these discrepancies, CYP2D6 genotypes with similar guidelinediplotype scores exhibit substantial differences in CYP2D6 metabolizer phenotypes. Thus, it is important that the guidelines are updated to be valid in predicting individual dose requirements of psychiatric drugs and others metabolized by CYP2D6.
  •  
21.
  •  
22.
  •  
23.
  • Pridgeon, CS, et al. (författare)
  • Hepatocyte Thorns, A Novel Drug-Induced Stress Response in Human and Mouse Liver Spheroids
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The in vivo-relevant phenotype of 3D liver spheroids allows for long-term studies of, e.g., novel mechanisms of chronic drug-induced liver toxicity. Using this system, we present a novel drug-induced stress response in human and murine hepatocyte spheroids, wherein long slender filaments form after chronic treatment with four different drugs, of which three are PPARα antagonists. The morphology of the thorns varies between donors and the compounds used. They are mainly composed of diverse protein fibres, which are glycosylated. Their formation is inhibited by treatment with fatty acids or antioxidants. Treatment of mice with GW6471 revealed changes in gene and protein expression, such as those in the spheroids. In addition, similar changes in keratin expression were seen following the treatment of hepatotoxic drugs, including aflatoxin B1, paracetamol, chlorpromazine, cyclosporine, and ketoconazole. We suggest that thorn formation may be indicative of hepatocyte metaplasia in response to toxicity and that more focus should be placed on alterations of ECM-derived protein expression as biomarkers of liver disease and chronic drug-induced hepatotoxicity, changes that can be studied in stable in vivo-like hepatic cell systems, such as the spheroids.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy