SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(KARLSSON Matts) "

Sökning: WFRF:(KARLSSON Matts)

  • Resultat 1-50 av 277
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Åstrand, Håkan, et al. (författare)
  • In vivo estimation of the contribution of elastin and collagen on the mechanical properties in the abdominal aorta of man : effect of age and gender
  • 2011
  • Ingår i: Journal of applied physiology. - : AMER PHYSIOLOGICAL SOC. - 8750-7587 .- 1522-1601. ; 110:1, s. 8750-8757
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanical properties of the aorta affect cardiac function and are related to cardiovascular morbidity/mortality. This study was designed to evaluate the isotropic (mainly elastin, elastiniso) and anisotropic (mainly collagen, collagenani) material parameters within the human aorta in vivo. Thirty healthy men and women in three different age categories (23–30, 41–54, and 67–72 yr) were included. A novel mechanical model was used to identify the mechanical properties and the strain field with aid of simultaneously recorded pressure and radius in the abdominal aorta. The magnitudes of the material parameters relating to both the stiffness of elastiniso and collagenani were in agreement with earlier in vitro studies. The load-bearing fraction attributed to collagenani oscillated from 10 to 30% between diastolic and systolic pressures during the cardiac cycle. With age, stiffness of elastiniso increased in men, despite the decrease in elastin content that has been found due to elastolysis. Furthermore, an increase in stiffness of collagenani at high physiological pressure was found. This might be due to increased glycation, as well as changed isoforms of collagen in the aortic wall with age. A marked sex difference was observed, with a much less age-related effect, both on elastiniso and collagenani stiffness in women. Possible factors of importance could be the effect of sex hormones, as well as differing collagen isoforms, between the sexes.
  •  
2.
  • Andersson, Magnus, et al. (författare)
  • Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow
  • 2019
  • Ingår i: Journal of Biomechanics. - : ELSEVIER SCI LTD. - 0021-9290 .- 1873-2380. ; 85, s. 108-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Disturbed, turbulent-like blood flow promotes chaotic wall shear stress (WSS) environments, impairing essential endothelial functions and increasing the susceptibility and progression of vascular diseases. These flow characteristics are today frequently detected at various anatomical, lesion and intervention-related sites, while their role as a pathological determinant is less understood. To present-day, numerous WSS-based descriptors have been proposed to characterize the spatiotemporal nature of the WSS disturbances, however, without differentiation between physiological laminar oscillations and turbulence-related WSS (tWSS) fluctuations. Also, much attention has been focused on magnetic resonance (MR) WSS estimations, so far with limited success; promoting the need of a near-wall surrogate marker. In this study, a new approach is explored to characterize the tWSS, by taking advantage of the tensor characteristics of the fluctuating WSS correlations, providing both a magnitude and an anisotropy measure of the disturbances. These parameters were studied in two patient-specific coarctation models (sever and mild), using large eddy simulations, and correlated against near-wall reciprocal Reynolds stress parameters. Collectively, results showed distinct regions of differing tWSS characteristics, features which were sensitive to changes in flow conditions. Generally, the post-stenotic tWSS was governed by near axisymmetric fluctuations, findings that where not consistent with conventional WSS disturbance predictors. At the 2-3 mm wall-offset range, a strong linear correlation was found between tWSS magnitude and near-wall turbulence kinetic energy (TKE), in contrast to the anisotropy indices, suggesting that MR-measured TKE can be used to assess elevated tWSS regions while tWSS anisotropy estimates request well-resolved simulation methods. (C) 2019 Elsevier Ltd. All rights reserved.
  •  
3.
  • Andersson, Magnus, et al. (författare)
  • Characterization of anisotropic turbulence behavior in pulsatile blood flow
  • 2021
  • Ingår i: Biomechanics and Modeling in Mechanobiology. - : SPRINGER HEIDELBERG. - 1617-7959 .- 1617-7940. ; 20, s. 491-506
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent-like hemodynamics with prominent cycle-to-cycle flow variations have received increased attention as a potential stimulus for cardiovascular diseases. These turbulent conditions are typically evaluated in a statistical sense from single scalars extracted from ensemble-averaged tensors (such as the Reynolds stress tensor), limiting the amount of information that can be used for physical interpretations and quality assessments of numerical models. In this study, barycentric anisotropy invariant mapping was used to demonstrate an efficient and comprehensive approach to characterize turbulence-related tensor fields in patient-specific cardiovascular flows, obtained from scale-resolving large eddy simulations. These techniques were also used to analyze some common modeling compromises as well as MRI turbulence measurements through an idealized constriction. The proposed method found explicit sites of elevated turbulence anisotropy, including a broad but time-varying spectrum of characteristics over the flow deceleration phase, which was different for both the steady inflow and Reynolds-averaged Navier-Stokes modeling assumptions. Qualitatively, the MRI results showed overall expected post-stenotic turbulence characteristics, however, also with apparent regions of unrealizable or conceivably physically unrealistic conditions, including the highest turbulence intensity ranges. These findings suggest that more detailed studies of MRI-measured turbulence fields are needed, which hopefully can be assisted by more comprehensive evaluation tools such as the once described herein.
  •  
4.
  • Andersson, Magnus, et al. (författare)
  • Correction: Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions (vol 6, pg 281, 2015)
  • 2015
  • Ingår i: Cardiovascular Engineering and Technology. - : SPRINGER. - 1869-408X .- 1869-4098. ; 6:4, s. 577-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation (LES) including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where the pre-stenotic hypoplastic segment may limit the possible improvement by treating the CoA alone. Spatiotem-poral maps of TKE and flow eccentricity could be linked to the characteristics of the post-stenotic jet, showing a versatile response between the CoA dilatations. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre-and immediate post treatment, as well as during follow-up studies.
  •  
5.
  • Andersson, Magnus, et al. (författare)
  • Model Verification and Error Sensitivity of Turbulence-Related Tensor Characteristics in Pulsatile Blood Flow Simulations
  • 2021
  • Ingår i: Fluids. - : MDPI. - 2311-5521. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Model verification, validation, and uncertainty quantification are essential procedures to estimate errors within cardiovascular flow modeling, where acceptable confidence levels are needed for clinical reliability. While more turbulent-like studies are frequently observed within the biofluid community, practical modeling guidelines are scarce. Verification procedures determine the agreement between the conceptual model and its numerical solution by comparing for example, discretization and phase-averaging-related errors of specific output parameters. This computational fluid dynamics (CFD) study presents a comprehensive and practical verification approach for pulsatile turbulent-like blood flow predictions by considering the amplitude and shape of the turbulence-related tensor field using anisotropic invariant mapping. These procedures were demonstrated by investigating the Reynolds stress tensor characteristics in a patient-specific aortic coarctation model, focusing on modeling-related errors associated with the spatiotemporal resolution and phase-averaging sampling size. Findings in this work suggest that attention should also be put on reducing phase-averaging related errors, as these could easily outweigh the errors associated with the spatiotemporal resolution when including too few cardiac cycles. Also, substantially more cycles are likely needed than typically reported for these flow regimes to sufficiently converge the phase-instant tensor characteristics. Here, higher degrees of active fluctuating directions, especially of lower amplitudes, appeared to be the most sensitive turbulence characteristics.
  •  
6.
  • Andersson, Magnus, et al. (författare)
  • Modeling of Subject Arterial Segments Using 3D Fluid Structure Interaction and 1D-0D Arterial Tree Network Boundary Condition
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • Modeling of Subject Specific Arterial Segments Using 3D Fluid Structure Interaction and a 1D-0D Arterial Tree Network Boundary Condition   Magnus Andersson, Jonas Lantz , Matts Karlsson   Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden   Introduction In recent years it has been possible to simulate 3D blood flow through CFD including the dilatation effect in elastic arteries using Fluid-Structure Interaction (FSI) to better match in vivo data. Patient specific imposed boundary condition (BC) is often used as the velocity profiles at the inlets. However, for the outlet BC a time-resolved pressure is required and often lacking as it is obtained by an invasive procedure. Numerous models have been developed for capturing the main effects of the vascular bed at these sites, which have been shown crucial and difficult to implement accurately. This work focus on a full scaled FSI simulation at an arterial section including the abdominal aorta, renal arteries and iliac bifurcations, obtained from MRI of an healthy individual. The outlet BC at the iliac arteries is connected with a 1D systemic arterial tree which is truncated with a 0D lumped model. This 3D-(0D-1D) connection can provide the essential features of the peripheral flow and, in contrast to the imposed BC, the 1D-0D coupling allow for investigation of cardiovascular diseases including stenoses and/or hypertension.   Methods The MRI images were segmented using an in-house software to obtain a 3D surface of the vessel lumen, Figure 1. The surfaces were meshed with high quality hexahedral element using ANSYS ICEM CFD 12.0 (ANSYS Inc, Canonsburg, PA, USA). A PC-MRI time-resolved massflow at the descending aorta were used as inlet BC, where 22% of the flow was forced into the renal bifurcations assuming negligible pressure wave reflection. The wall was modelled with an isotropic elastic model with addition of an elastic support mimicking the damping effect of the surrounding tissue. The 1D model is based on transmission-line theory which involves an impedance model for the pressure-flow relationship. The arterial topology was extracted from literature and only the central arteries after the iliacs was considered. At the truncation sites a 3-element Windkessel model (known as RRC) was implemented and is the most common model of choice for describing the main effects of all the distal vessels.  The 1D system solves the Fourier frequency impedance coefficients over one heart cycle accounting for wave reflection by using the 15 first harmonics to obtain the corresponding pressure. The 3D-1D connection is done offline, which allows for an independent and more stable 3D simulation. This step is iteratively repeated until convergence is reach between the present 3D outlet flow and previous implemented 1D outlet flow. The simulation was utilized in ANSYS CFX, ANSYS Mechanical, and coupled by ANSYS Multi-Field.   Results The (0D-1D)-3D model showed convergence of pressure/flow at the iliac outlets, Figure 2. The method provides realistic pressure and flow responses based on the input parameters and even capture the relative difference in flow/pressure distribution between the right and left illiac artery due to subject specific geometric variability. Parameters such as velocity profiles and WSS can be extracted in the 3D domain.   Conclusions This method allows for a better insight of large scale vascular networks effect of the local 3D flow features and also gives a better representation of the peripheral flow compared to a pure 0D (lumped parameter/Windkessel) model. PC-MRI will provide data for validation of velocity profiles in the 3D model. Future work includes a subject specific 1D vascular topology to be combined with the 3D model.   
  •  
7.
  • Andersson, Magnus, et al. (författare)
  • Multidirectional WSS disturbances in stenotic turbulent flows: A pre- and post-intervention study in an aortic coarctation
  • 2017
  • Ingår i: Journal of Biomechanics. - : ELSEVIER SCI LTD. - 0021-9290 .- 1873-2380. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Wall shear stress (WSS) disturbances are commonly expressed at sites of abnormal flow obstructions and may play an essential role in the pathogenesis of various vascular diseases. In laminar flows these disturbances have recently been assessed by the transverse wall shear stress (transWSS), which accounts for the WSS multidirectionality. Site-specific estimations of WSS disturbances in pulsatile transitional and turbulent type of flows are more challenging due to continuous and unpredictable changes in WSS behavior. In these complex flow settings, the transWSS may serve as a more comprehensive descriptor for assessing WSS disturbances of general nature compared to commonly used parameters. In this study large eddy simulations (LES) were used to investigate the transWSS properties in flows subjected to different pathological turbulent flow conditions, governed by a patient-specific model of an aortic coarctation pre and post balloon angioplasty. Results showed that regions of strong near-wall turbulence were collocated with regions of elevated transWSS and turbulent WSS, while in more transitional-like near-wall flow regions a closer resemblance was found between transWSS and low, and oscillatory WSS. Within the frame of this study, the transWSS parameter demonstrated a more multi-featured picture of WSS disturbances when exposed to different types of flow regimes, characteristics which were not depicted by the other parameters alone. (C) 2016 Published by Elsevier Ltd.
  •  
8.
  •  
9.
  • Andersson, Magnus, 1983-, et al. (författare)
  • Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation - Impact of Virtual Interventions
  • 2015
  • Ingår i: Cardiovascular Engineering and Technology. - : Springer. - 1869-408X .- 1869-4098. ; 6:6, s. 281-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation (LES) including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.
  •  
10.
  • Andersson, Magnus, 1983- (författare)
  • Turbulence Descriptors in Arterial Flows : Patient-Specific Computational Hemodynamics
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • At this very moment, there are literally millions of people who suffer from various types of cardiovascular diseases (CVDs), many of whom will experience reduced quality of life or premature lift expectancy. The detailed underlying pathogenic processes behind many of these disorders are not well understood, but were abnormal dynamics of the blood flow (hemodynamics) are believed to play an important role, especially atypical flow-mediated frictional forces on the intraluminal wall (i.e. the wall shear stress, WSS). Under normal physiological conditions, the flow is relatively stable and regular (smooth and laminar), which helps to maintain critical vascular functions. When these flows encounter various unfavorable anatomical obstructions, the flow can become highly unstable and irregular (turbulent), giving rise to abnormal fluctuating hemodynamic forces, which increase the bloodstream pressure losses, can damage the cells within the blood, as well as impair essential structural and functional regulatory mechanisms. Over a prolonged time, these disturbed flow conditions may promote severe pathological responses and are therefore essential to foresee as early as possible.Clinical measurements of blood flow characteristics are often performed non-invasively by modalities such as ultrasound and magnetic resonance imaging (MRI). High-fidelity MRI techniques may be used to attain a general view of the overall large-scale flow features in the heart and larger vessels but cannot be used for estimating small-scale flow variations nor capture the WSS characteristics. Since the era of modern computers, fluid motion can now also be predicted by computational fluid dynamics (CFD)simulations, which can provide discrete mathematical approximations of the flow field with much higher details (resolution) and accuracy compared to other modalities. CFD simulations rely on the same fundamental principles as weather forecasts, the physical laws of fluid motion, and thus can not only be used to assess the current flow state but also to predict (foresee) important outcome scenarios in e.g. intervention planning. To enable blood flow simulations within certain cardiovascular segments, these CFD models are usually reconstructed from MRI-based anatomical and flow image-data. Today, patient-specific computational hemodynamics are essentially only performed within the research field, where much emphasis is dedicated towards understanding normal/abnormal blood flow physiology, developing better individual-based diagnostics/treatments, and evaluating the results reliability/generality in order to approach clinical applicability.In this thesis, advanced CFD methods were adopted to simulate realistic patient-specific turbulent hemodynamics in constricted arteries reconstructed from MRI data. The main focus was to investigate novel, comprehensive ways to characterize these abnormal flow conditions, in the pursuit of better clinical decision-making tools; from more in-depth analyzes of various turbulence-related tensor characteristics to descriptors that evaluate the hemodynamics more globally in the domain. Results from the studies in this thesis suggest that these turbulence descriptors can be useful to: i) target cardiovascular sites prone to specific turbulence characteristics, both in the bulk flow and on the intraluminal wall, ii) provide a more extensive view of the general flow severity within malformed vascular regions, and iii) evaluated and potentially improve cardiovascular modeling strategies and MRI-measured turbulence data.The benefit of these descriptors is that they all, in principle, can be measured by different MRI procedures, making them more accessible from a clinical perspective. Although the significance of these suggested flow-mediated phenotypes has not yet been evaluated clinically, this work opens many doors of opportunities for making more thorough and longitudinal patient-specific studies, including large cohorts of patients with various CVDs susceptible to turbulent-like conditions, as well as performing more in-depth CFD-MRI validation analyzes.
  •  
11.
  • Andersson, Magnus, et al. (författare)
  • Turbulence Quantification of Stenotic Blood Flow Using Image-Based CFD : Effect of Different Interventions
  • 2014
  • Ingår i: WCB 2014.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Turbulent blood flow is often associated with some sort of cardiovascular disease, e.g. sharp bends and/or sudden constrictions/expansions of the vessel wall. The energy losses associated with the turbulent flow may increase the heart workload in order to maintain cardiac output (CO). In the present study, the amount of turbulent kinetic energy (TKE) developed in the vicinity of an aortic coarctation was estimated pre-intervention and in a variety of post-intervention configurations, using scale-resolved image-based computational fluid dynamics (CFD). TKE can be measured using magnet resonance imaging (MRI) and have also been validated with CFD simulations [1], i.e. a parameter that not only can be quantified using simulations but can also be measured by MRI.Patient-specific geometry and inlet flow conditions were obtained using contrast-enhanced MR angiography and 2D cine phase-contrast MRI, respectively. The intervention procedure was mimicked using an inflation simulation, where six different geometries were obtained. A scale-resolving turbulence model, large eddy simulation (LES), was utilized to resolve the largest turbulent scales and also to capture the laminar-to-turbulent transition. All cases were simulated using baseline CO and with a 20% CO increase to simulate a possible flow adaption after intervention.For this patient, results shows a non-linear decay of the total amount of TKE integrated over the cardiac phase as the stenotic cross-sectional area is increased by the intervention.  Figure 1 shows the original segmented geometry and two dilated coarctation with corresponding volume rendering of the TKE at peak systole. Due to turbulent transition at a kink upstream the stenosis further dilation of the coarctation tends to restrict the TKE to a plateau, and continued vessel expansion may therefore only induce unnecessary stresses onto the arterial wall. This patient-specific non-invasive framework has shown the geometrical impact on the TKE estimates. New insight in turbulence development indicates that the studied coarctation can only be improved to a certain extent, where focus should be on the upstream region, if further TKE reduction is motivated. The possibility of including MRI in a combined framework could have great potential for future intervention planning and follow-up studies.  [1] J. Lantz, T. Ebbers, J. Engvall and M. Karlsson, Numerical and Experimental Assessment of Turbulent Kinetic Energy in an Aortic Coarctation, Journal of Biomechnics, 2013. 46(11): p. 1851-1858.
  •  
12.
  •  
13.
  • Balgård, Matts, et al. (författare)
  • Inclusion of pharmacy students in an interprofessional training ward placement for health care students in Sweden
  • 2021
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • What was done?: Final year undergraduate pharmacy students, specialising clinical pharmacy,were given the opportunity to spend two weeks of their six months pharmacypractice to participate in an interprofessional training ward placement(ITWP) together with medical, nursing and physiotherapy students. During thistwo-week clinical placement, the students were collaboratively responsiblefor managing the care of geriatric inpatients while under supervision oflicensed practitioners.Why was it done?: ITWP for health care students is established at various teaching hospitals.However, to our knowledge, no such program in Scandinavia has includedpharmacy students. Clinical pharmacy is a growing profession in Sweden andother health care students will in the future work alongside with clinicalpharmacists. Therefore we set out to add pharmacy students to the ITWP team,believing that it would be a valuable experience for them to collaborate andshare knowledge with students from other health care professions. Equallyimportant, it is a way to promote the pharmacist’s competence andcontribution to the multiprofessional health care team, prior to graduation.How was it done?: A working group was formed consisting of teachers from the faculty ofpharmacy, a student representative and a working clinical pharmacist. Thegroup developed the initiative, including among other things, prerequisites,an evaluation plan, a workflow tool for clinical rounds and suggested tasksfor pharmacy students during the placement.What has been achieved?: The program has been running for three semesters and 6–8 pharmacy studentshave participated in the ITWP each semester. The initiative has beenevaluated using surveys. Participating pharmacy students expressed gainingnew knowledge and better insight into nursing care and the roles of the otherprofessions. Nursing students appreciated the support in medicationmanagement and medical students found the pharmacy students to be valuablediscussion partners that could challenge their drug-related decisions. Tutorsexpressed that the pharmacy students brought a beneficial dynamic to the ITWPteam.What next?: The opportunity for students from different professions to work together witha common objective in a real-life setting gives them valuable insight in eachother’s professional roles early in their careers. This good practiceinitiative could be used in other interprofessional training ward placementswishing to involve pharmacy students.
  •  
14.
  • Barclay, Susan A, et al. (författare)
  • The shape of the proximal isovelocity surface area varies with regurgitant orifice size and distance from orifice : computer simulation and model experiments with color M-mode technique.
  • 1993
  • Ingår i: Journal of the American Society of Echocardiography. - 0894-7317 .- 1097-6795. ; 6:4, s. 433-445
  • Tidskriftsartikel (refereegranskat)abstract
    • The hemispheric proximal isovelocity surface area method for quantification of mitral regurgitant flow (i.e., Qc = 2 pi r2v), where 2 pi r2 is the surface area and v is the velocity at radius r, was investigated as distance from the orifice was increased. Computer simulations and steady flow model experiments were performed for orifices of 4, 6, and 8 mm. Flow rates derived from the centerline velocity and hemispheric assumption were compared with true flow rates. Proximal isovelocity surface area shape varied as distance from each orifice was increased and could only be approximated from the hemispheric equation when a certain distance was exceeded: > 7, > 10, and > 12 mm for the 4, 6, and 8 mm orifices, respectively. Prediction of relative error showed that the best radial zone at which to make measurements was 5 to 9, 6 to 14 and 7 to 17 mm for the 4, 6, and 8 mm orifices, respectively. Although effects of a nonhemispheric shape could be compensated for by use of a correction factor, a radius of 8 to 9 mm can be recommended without the use of a correction factor over all orifices studied if a deviation in calculated as compared with true flow of 15% is considered acceptable. These measurements therefore have implications for the technique in clinical practice.
  •  
15.
  • Bergengren, Lovisa, 1972- (författare)
  • Cervical screening with primary HPV : from research to clinical effectiveness
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organized cervical screening has greatly reduced the incidence of cervical cancer where implemented. Human papilloma virus (HPV) is the cause of cervical cancer, and in later years, convincing evidence has led to cervical screening with HPV as the primary method being implemented around the world. The overall aim of this thesis is to improve cervical screening, with focus on HPV screening.Papers I–III were performed with focus on postmenopausal women. Women aged, 55–59 years, excluded from the screening with a normal cytology cervical sample were found to have a high-risk HPV (hrHPV) prevalence of 5.5% in paper II. In a follow-up sample, 56% (71/126) had a persistent infection with the same genotype. Nineteen per cent of the women had dysplasia, where the majority of the high-grade squamous intraepithelial lesions (HSILs) were associated with HPV types other than HPV 16/18.Women 55-59 has a lower attendance rate in the study region, and since self-sample has been proven to increase attendance, paper I was performed to compare self-sample and professionally collected samples in these postmenopausal women. The concordance between the sampling methods was 83%, and both tests detected all histological HSILs. When including a study with older women (aged 70 years) in paper III, 23% of histological HSILs were found in hrHPV-positive women.Paper IV is a scientific evaluation of an implemented HPV-based screening programme, comparing clinical effectiveness and cost with cytology screening. More HSIL+ were detected in the new programme but at a higher cost than the old cytology-based programme. The screening visits for sampling accounted for two thirds of the costs.Altogether, the results indicate the importance of having a negative HPVtest before exiting screening. Data also present the necessity to find biomarkers that are more specific than cytology and HPV 16/18 for triaging women with hrHPV to further follow-up, both among postmenopausal women and other age groups when screening with HPV, since many women without HSIL are coming for clinical follow-up and treatment. Extending the screening interval between hrHPV-negative tests as well as implementing selfsampling to a greater extent can be important changes, since two thirds of the costs in the programme come from screening visits for sampling.
  •  
16.
  • Bergh, Johan, et al. (författare)
  • Effekter av ett förändrat klimat på skogen och implikationer för skogsbruket : Bilaga B 19, Arbetsrapport 34
  • 2007
  • Ingår i: Sverige inför klimatförändringarna. - : Fritzes. ; , s. 1-71
  • Bokkapitel (populärvet., debatt m.m.)abstract
    • Att klimatet kan komma att förändras påverkar svenskt skogsbruk. Skogen har i sig en direkt inverkan på klimatet samtidigt som skogsbruket kan behöva anpassas till de nya förhållandena. Ett osäkert klimat sätter brukandet av skogen i ett nytt läge som vi inte har någon tidigare erfarenhet av. Scenarier för framtida klimatutveckling är behäftade med stor osäkerhet och de förväntade effekterna på skogen blir således ännu mer osäkra. Trots detta kan man ändå förutsäga några sannolika huvuddrag i effekterna på den svenska skogen vid ett framtida ändrat klimat. En ökad potential för biomassaproduktion kan förväntas, liksom ökade möjligheter att använda nya arter i skogsbruket. Samtidigt ökar sannolikt risken för vissa typer av skador.Att väga eventuella fördelar i form av ökad produktion och ökade möjligheter i trädslagsval mot ökade risker för skador är viktigt för att ge samhället ett helhetsperspektiv och för att en större grupp ska ha möjlighet att ta till sig frågan. Det är också viktigt att i största möjliga mån kvantifiera eller ge ramarna i ekonomiska termer för hur det förändrade klimatet kan tänkas påverka skogsbruket. Vidare kan det vara styrande för prioritering av fortsatta forskningsarbeten och riskbedömning och för att prioritera åtgärder. Därför har vi försökt utifrån befintlig kunskap idag, konstruera en Tabell över den ekonomiska betydelsen och forskningsbarheten för olika risk/ämnesområden (se Tabell 17 sidan 39). De kanske största effekterna av ett förändrat klimat på ekonomin inom skogsbruket skulle vara om vi lyckas utnyttja den ökade produktionspotentialen. Det förutsätter att vi kan bemästra de negativa effekterna i första hand av en ökad risk för vindfällning, skadeangrepp från insekter och svampar. Mot bakgrund av skogsbrukets stora betydelse som naturresurs och industriell bas, så finner vi att det är viktigt att vi står rustade inför en framtid med såväl ökade hot som nya möjligheter.I denna skrift försöker vi beskriva och analysera tänkbara effekter av ett förändrat klimat på skogen och bedömt deras implikationer för produktionsskogsbruket. Andra aspekter än produktionsaspekter på skogsbruket har inte behandlats. Analysen sker i fyra steg. Vi inleder med att, så långt nuvarande kunskapsläge tillåter, kvantifiera effekterna på den skogliga primärproduktionen – tillväxten i skogen. I ett andra steg omsätts dessa effekter till effekter på produktionsekonomin i ett bestånd. Därefter analyseras tänkbara effekter på risken för stormfällning i skogen. I ett sista steg breddas diskussionen till en något mera spekulativ bild av tänkbara effekter på skogsbrukets ekonomi.
  •  
17.
  •  
18.
  • Berglund, Kristina, 1969, et al. (författare)
  • Changes in mental well-being during Minnesota treatment.
  • 2004
  • Ingår i: Nordic journal of psychiatry. - : Informa UK Limited. - 0803-9488 .- 1502-4725. ; 58:5, s. 383-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study assessed mental well-being daily in 28 alcohol-dependent patients who underwent 28 days of Minnesota inpatient treatment. The Swedish Mood Adjective Check List (sMACL) with six bipolar dimensions was used for daily self-reports. At start of treatment, patients had lower levels in four dimensions of mental well-being compared to those of a norm group. Moreover, patients showed significant improvements in all levels of mental well-being during treatment, and at the end of treatment patients had values within the normal range, except for one dimension (activation/deactivation), in which the levels were significantly higher. The findings may suggest a beneficial effect of this type of treatment on mental well-being, although findings may also reflect a mere effect of adjustment to treatment or the social situation.
  •  
19.
  • Berntsson, Fredrik, 1971-, et al. (författare)
  • A Modification to the Kirchhoff Conditions at a Bifurcation and Loss Coefficients
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • One dimensional models for fluid flow in tubes are frequently used tomodel complex systems, such as the arterial tree where a large numberof vessels are linked together at bifurcations. At the junctions transmission conditions are needed. One popular option is the classic Kirchhoffconditions which means conservation of mass at the bifurcation andprescribes a continuous pressure at the joint.In reality the boundary layer phenomena predicts fast local changesto both velocity and pressure inside the bifurcation. Thus it is not appropriate for a one dimensional model to assume a continuous pressure. In this work we present a modification to the classic Kirchhoff condi-tions, with a symmetric pressure drop matrix, that is more suitable forone dimensional flow models. An asymptotic analysis, that has beencarried out previously shows that the new transmission conditions hasen exponentially small error.The modified transmission conditions take the geometry of the bifurcation into account and can treat two outlets differently. The conditions can also be written in a form that is suitable for implementationin a finite difference solver. Also, by appropriate choice of the pressuredrop matrix we show that the new transmission conditions can producehead loss coefficients similar to experimentally obtained ones.
  •  
20.
  • Berntsson, Fredrik, 1971-, et al. (författare)
  • A one-dimensional model of a false aneurysm
  • 2017
  • Ingår i: International Journal of Research in Engineering and Science (IJRES). - : IJRES. - 2320-9356 .- 2320-9364. ; 5:6, s. 61-73
  • Tidskriftsartikel (refereegranskat)abstract
    •  A false aneurysm is a hematoma, i.e. collection ofblood outside of a blood vessel, that forms due to a hole  in the wall of an artery . This represents a serious medical condition that needs to be monitored and, under certain conditions, treatedurgently. In this work a one-dimensional model of a false aneurysm isproposed. The new model is based on a one-dimensional model of anartery previously presented by the authors and it takes into accountthe interaction between the hematoma  and the surrounding musclematerial. The model equations are derived  using rigorous asymptoticanalysis for the case of a simplified geometry.   Even though the model is simple it still supports a realisticbehavior for the system consisting of the vessel and the  hematoma. Using numerical simulations we illustrate the behavior ofthe model. We also investigate the effect  of changing the size of the hematoma. The simulations show that ourmodel can reproduce realistic solutions. For instance we show thetypical strong pulsation of an aneurysm by blood entering the hematoma during the work phase of the cardiac cycle, and the blood returning tothe vessel during the resting phase. Also we show that the aneurysmgrows  if the pulse rate is increased due to, e.g., a higher work load. 
  •  
21.
  • Berntsson, Fredrik, et al. (författare)
  • A one-dimensional model of viscous blood flow in an elastic vessel
  • 2016
  • Ingår i: Applied Mathematics and Computation. - : ELSEVIER SCIENCE INC. - 0096-3003 .- 1873-5649. ; 274, s. 125-132
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present a one-dimensional model of blood flow in a vessel segment with an elastic wall consisting of several anisotropic layers. The model involves two variables: the radial displacement of the vessels wall and the pressure, and consists of two coupled equations of parabolic and hyperbolic type. Numerical simulations on a straight segment of a blood vessel demonstrate that the model can produce realistic flow fields that may appear under normal conditions in healthy blood vessels; as well as flow that could appear during abnormal conditions. In particular we show that weakening of the elastic properties of the wall may provoke a reverse blood flow in the vessel. (C) 2015 Elsevier Inc. All rights reserved.
  •  
22.
  • Björck, Hanna M., et al. (författare)
  • Characterization of Shear-Sensitive Genes in the NormalRat Aorta Identifies Hand2 as a Major Flow-ResponsiveTranscription Factor
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Shear forces play a key role in the maintenance of vessel wall integrity. Current understanding regarding shear-dependent gene expression is mainly based on in vitro or in vivo observations with experimentally deranged shear, hence reflecting acute molecular events in relation to flow. Our objective was to determine wall shear stress (WSS) in the rat aorta and study flow-dependent vessel wall biology under physiological conditions.Methods and Results: Animal-specific aortic WSS magnitude and vector direction were estimated using computational fluid dynamic simulation based on aortic geometry and flow information acquired by MRI. Two distinct flow pattern regions were identified in the normal rat aorta; the distal part of the inner curvature being exposed to low WSS and a non-uniform vector direction, and a region along the outer curvature being subjected to markedly higher levels of WSS and a uniform vector direction. Microarray analysis revealed a strong differential expression between the flow regions, particularly associated with transcriptional regulation. In particular, several genes related to Ca2+-signalling, inflammation, proliferation and oxidative stress were among the most highly differentially expressed.Conclusions: Microarray analysis validated the CFD-defined WSS regions in the rat aorta, and several novel flow-dependent genes were identified. The importance of these genes in relation to atherosusceptibility needs further investigation.
  •  
23.
  • Bolger, Ann F, 1957-, et al. (författare)
  • Transit of blood flow through thehuman left ventricle mapped by cardiovascular magnetic resonance
  • 2007
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Informa UK Limited. - 1097-6647 .- 1532-429X. ; 9:5, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context.METHODS:Three dimensional, three directional, time resolved magnetic resonance phase-contrast velocity mapping was performed at 1.5 Tesla in 17 normal subjects, 6 female, aged 44+/-14 years (mean+/-SD). We visualized and measured the relative volumes of LV flow components and the diastolic changes in inflowing kinetic energy (KE). Of total diastolic inflow volume, 44+/-11% followed a direct, albeit curved route to systolic ejection (videos 1 and 2), in contrast to 11% in a subject with mildly dilated cardiomyopathy (DCM), who was included for preliminary comparison (video 3). In normals, 16+/-8% of the KE of inflow was conserved to the end of diastole, compared with 5% in the DCM patient. Blood following the direct route lost or transferred less of its KE during diastole than blood that was retained until the next beat (1.6+/-1.0 millijoules vs 8.2+/-1.9 millijoules, p<0.05); whereas, in the DCM patient, the reduction in KE of retained inflow was 18-fold greater than that of the blood tracing the direct route.CONCLUSION:Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.
  •  
24.
  • Bradley, Andreas, 1983-, et al. (författare)
  • Bird-Like Wing Conguration for Pitch Control of a Tailless Aircraft
  • 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • A numerical study of a small bird-like aircraft has been performed. The aim of the study was to investigate how a swing wing (actualized through a constant span morphing wing) can be used for pitch control of a tailless aircraft. The results show that a swing wing can be successfully used, and that the aircraft can be maintained in a trimmed state by only small adjustments of part of the wing. A comparison was also made with a Vortex lattice method, but these results significantly deviated from those obtained with CFD. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
  •  
25.
  • Bradley, Andreas (författare)
  • CFD Simulations for Film Cooling : Reduced Models at Engine Like Conditions
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In gas turbines some parts are exposed to combustion gases with temperatures well above the melting temperature of the material. Therefore, various cooling techniques are utilized in order to protect the parts exposed to these hot gases. One such technique, film cooling, is a common and well established way to protect the exposed parts. Film cooling involves the ejection of cold air on the surface of the parts that are to be protected, thus creating a film of colder air between the surface and the hot gases.Computational Fluid Dynamics (CFD) is a way of calculating fluid flow, and can be used to calculate the effectiveness of a cooling film in film cooling applications. CFD is demanding in terms of computer power, especially when advanced methods are to be used. Even the simpler methods, such as Reynolds Average Navier-Stokes (RANS), can be quite demanding, time and computer power-wise, and require resources not always available. Finding ways of limiting the needed computer power is therefore of large interest.The aim of this thesis is to reduce the computational time of film cooling CFD-simulations, by using reduced models. To achieve this, simulations has been conducted and compared to experiments. The investigated setup is of an enginelike equipment, where a guide vane is investigated for heat transfer coefficient and film effectiveness. The geometry in the experimental setup is constructed in such a way as to give the same pressure distribution around the guide vane as can be seen in a real gas turbine, although at lower temperatures than those in the real turbine. The CFD-simulations conducted on the test rig includes RANS-simulations using the realizable k- and the SST k-! turbulence models.The reduced model contains only the central part of the vane. The walls of the test rig is replaced with periodic boundary conditions. This narrow model gives good agreement with the full model for heat transfer coefficient. Due to the large computational cost required to conduct simulations with cooling on the full model no comparison were made between the cooled narrow and cooled full model.To further reduce the size of the computational domain, two additional models were investigated. The first one involves a reduction of the full domain to only include the section being studied, in this case the suction side of the guide vane.This infers a reduction of the mesh size to less than ten percent of the size of what a mesh of the cooled full domain would be. The next step to reduce the size of the model and mesh is to make a narrow version of the already shortened model. The results for these two models show that they perform adequately to each other and (in the cases where a comparison is possible), to the full domain.
  •  
26.
  • Bradley, Andreas, et al. (författare)
  • Towards Efficient CFD-Simulations of Engine LikeTurbine Guide Vane Film Cooling
  • 2011
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It is well known that the efficiency of a gas turbine can be increased by using higher combustion temperatures and that this demands improved cooling. This study focuses on strategies to decrease the turnaround time for numerical predictions of film cooling while keeping the ability to resolve details of the flow. Simulations have been carried out for a real vane geometry at close to engine-like conditions and results are compared with corresponding experiments. The investigation includes an un-cooled situation for aerodynamic validation and to determine baseline heat transfer coefficent. Simulations and experiments of film effectiveness and heat transfer coefficient and their dependence of blowing ratio are investigated.
  •  
27.
  •  
28.
  •  
29.
  • Brandberg, Joakim, et al. (författare)
  • Non-stationary flow through non-planar circular constrictions : application to mitral valve disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Quantification of valvular malfunctions by means of noninvasive methods is presently far from perfect. Since valvular regurgitation is common, a simple and reliable method for quantitative assessment is desired. In this paper the proximal isovelocity surface area method, (PISA) was studied. Numerical simulations for non-stationary flow and non-planar circular geometries were compared with ultrasound measurements in an invitro model with the same geometry and similar flow characteristics. Three different valvular geometries were used: planar, reversed cone and funnel. In the numerical simulation special emphasis was given to the influence from the angle of the valvular leaflets on the proximal surface area. We found both numerically and experimentally that there is support to use the hemispherical velocity profile assumption for the geometries investigated except for the funnel case. Here the actual geometry at the funnel inlet should be considered instead of the half-sphere approximation.
  •  
30.
  •  
31.
  • Bäck, Sophia, et al. (författare)
  • Assessment of transmitral and left atrial appendage flow rate from cardiac 4D-CT
  • 2023
  • Ingår i: Communications Medicine. - : Springer Nature. - 2730-664X. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plain language summaryAssessing the blood flow inside the heart is important in diagnosis and treatment of various cardiovascular diseases, such as atrial fibrillation or heart failure. We developed a method to accurately track the motion of the heart walls over the course of a heartbeat in three-dimensional Computed Tomography (CT) images. Based on the motion, we calculated the amount of blood passing through the mitral valve and the left atrial appendage orifice, which are markers used in the diagnostic of heart failure and assessment of stroke risk in atrial fibrillation. The results agreed well with measurements from 4D flow MRI, an imaging technique that measures blood velocities. Our method could broaden the use of CT and make additional exams redundant. It can even be used to calculate the blood flow inside the heart. BackgroundCardiac time-resolved CT (4D-CT) acquisitions provide high quality anatomical images of the heart. However, some cardiac diseases require assessment of blood flow in the heart. Diastolic dysfunction, for instance, is diagnosed by measuring the flow through the mitral valve (MV), while in atrial fibrillation, the flow through the left atrial appendage (LAA) indicates the risk for thrombus formation. Accurate validated techniques to extract this information from 4D-CT have been lacking, however.MethodsTo measure the flow rate though the MV and the LAA from 4D-CT, we developed a motion tracking algorithm that performs a nonrigid deformation of the surface separating the blood pool from the myocardium. To improve the tracking of the LAA, this region was deformed separately from the left atrium and left ventricle. We compared the CT based flow with 4D flow and short axis MRI data from the same individual in 9 patients.ResultsFor the mitral valve flow, good agreement was found for the time span between the early and late diastolic peak flow (bias: <0.1 s). The ventricular stroke volume is similar compared to short-axis MRI (bias 3 ml). There are larger differences in the diastolic peak flow rates, with a larger bias for the early flow rate than the late flow rate. The peak LAA outflow rate measured with both modalities matches well (bias: -6 ml/s).ConclusionsOverall, the developed algorithm provides accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA compared to 4D flow MRI. Back et al. describe a motion tracking algorithm to measure the flow rate through the mitral valve (MV) and the left atrial appendage (LAA) from 4D-CT data. The developed algorithm provided accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA to those measured by 4D flow MRI.
  •  
32.
  • Carlhall, C., et al. (författare)
  • Reply [2]
  • 2006
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 291:5
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
  •  
33.
  • Carlhäll, Carljohan, 1973-, et al. (författare)
  • Contribution of mitral annular dynamics to LV diastolic filling with alteration in preload and inotropic state
  • 2007
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 293:3, s. G1473-H1479
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitral annular (MA) excursion during diastole encompasses a volume that is part of total left ventricular (LV) filling volume (LVFV). Altered excursion or area variation of the MA due to changes in preload or inotropic state could affect LV filling. We hypothesized that changes in LV preload and inotropic state would not alter the contribution of MA dynamics to LVFV. Six sheep underwent marker implantation in the LV wall and around the MA. After 7–10 days, biplane fluoroscopy was used to obtain three-dimensional marker dynamics from sedated, closed-chest animals during control conditions, inotropic augmentation with calcium (Ca), preload reduction with nitroprusside (N), and vena caval occlusion (VCO). The contribution of MA dynamics to total LVFV was assessed using volume estimates based on multiple tetrahedra defined by the three-dimensional marker positions. Neither the absolute nor the relative contribution of MA dynamics to LVFV changed with Ca or N, although MA area decreased (Ca, P < 0.01; and N, P < 0.05) and excursion increased (Ca, P < 0.01). During VCO, the absolute contribution of MA dynamics to LVFV decreased (P < 0.001), based on a reduction in both area (P < 0.001) and excursion (P < 0.01), but the relative contribution to LVFV increased from 18 ± 4 to 45 ± 13% (P < 0.001). Thus MA dynamics contribute substantially to LV diastolic filling. Although MA excursion and mean area change with moderate preload reduction and inotropic augmentation, the contribution of MA dynamics to total LVFV is constant with sizeable magnitude. With marked preload reduction (VCO), the contribution of MA dynamics to LVFV becomes even more important.
  •  
34.
  • Carlhäll, Carljohan, 1973-, et al. (författare)
  • Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change
  • 2004
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 287:4, s. H1836-H1841
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitral annulus (MA) has a complex shape and motion, and its excursion has been correlated to left ventricular (LV) function. During the cardiac cycle the annulus’ excursion encompasses a volume that is part of the total LV volume change during both filling and emptying. Our objective was to evaluate the contribution of MA excursion and shape variation to total LV volume change. Nine healthy subjects aged 56 ± 11 (means ± SD) years underwent transesophageal echocardiography (TEE). The MA was outlined in all time frames, and a four-dimensional (4-D) Fourier series was fitted to the MA coordinates (3-D+time) and divided into segments. The annular excursion volume (AEV) was calculated based on the temporally integrated product of the segments’ area and their incremental excursion. The 3-D LV volumes were calculated by tracing the endocardial border in six coaxial planes. The AEV (10 ± 2 ml) represented 19 ± 3% of the total LV stroke volume (52 ± 12 ml). The AEV correlated strongly with LV stroke volume (r = 0.73; P < 0.05). Peak MA area occurred during middiastole, and 91 ± 7% of reduction in area from peak to minimum occurred before the onset of LV systole. The excursion of the MA accounts for an important portion of the total LV filling and emptying in humans. These data suggest an atriogenic influence on MA physiology and also a sphincter-like action of the MA that may facilitate ventricular filling and aid competent valve closure. This 4-D TEE method is the first to allow noninvasive measurement of AEV and may be used to investigate the impact of physiological and pathological conditions on this important aspect of LV performance.
  •  
35.
  •  
36.
  • Casas Garcia, Belén, et al. (författare)
  • Bridging the gap between measurements and modelling : a cardiovascular functional avatar
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.
  •  
37.
  • Casas Garcia, Belén, et al. (författare)
  • Non-invasive Assessment of Systolic and Diastolic Cardiac Function During Rest and Stress Conditions Using an Integrated Image-Modeling Approach
  • 2018
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The possibility of non-invasively assessing load-independent parameters characterizing cardiac function is of high clinical value. Typically, these parameters are assessed during resting conditions. However, for diagnostic purposes, the parameter behavior across a physiologically relevant range of heart rate and loads is more relevant than the isolated measurements performed at rest. This study sought to evaluate changes in non-invasive estimations of load-independent parameters of left-ventricular contraction and relaxation patterns at rest and during dobutamine stress. Methods: We applied a previously developed approach that combines non-invasive measurements with a physiologically-based, reduced-order model of the cardiovascular system to provide subject-specific estimates of parameters characterizing left ventricular function. In this model, the contractile state of the heart at each time point along the cardiac cycle is modeled using a time-varying elastance curve. Non-invasive data, including four-dimensional magnetic resonance imaging (4D Flow MRI) measurements, were acquired in nine subjects without a known heart disease at rest and during dobutamine stress. For each of the study subjects, we constructed two personalized models corresponding to the resting and the stress state. Results: Applying the modeling framework, we identified significant increases in the left ventricular contraction rate constant [from 1.5 +/- 0.3 to 2 +/- 0.5 (p = 0.038)] and relaxation constant [from 37.2 +/- 6.9 to 46.1 +/- 12 (p = 0.028)]. In addition, we found a significant decrease in the elastance diastolic time constant from 0.4 +/- 0.04 s to 0.3 +/- 0.03 s = 0.008). Conclusions: The integrated image-modeling approach allows the assessment of cardiovascular function given as model-based parameters. The agreement between the estimated parameter values and previously reported effects of dobutamine demonstrates the potential of the approach to assess advanced metrics of pathophysiology that are otherwise difficult to obtain non-invasively in clinical practice.
  •  
38.
  •  
39.
  • Danielsson, Örjan, et al. (författare)
  • A Systematic Method for Predictive In Silico Chemical Vapor Deposition
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:14, s. 7725-7736
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive systematic method for chemical vapor deposition modeling consisting of seven well-defined steps is presented. The method is general in the sense that it is not adapted to a certain type of chemistry or reactor configuration. The method is demonstrated using silicon carbide (SiC) as a model system, with accurate matching to measured data without tuning of the model. We investigate the cause of several experimental observations for which previous research reports only have had speculative explanations. In contrast to previous assumptions, we can show that SiCl2 does not contribute to SiC deposition. We can confirm the presence of larger molecules at both low and high C/Si ratios, which have been thought to cause so-called step-bunching. We can also show that high concentrations of Si lead to other Si molecules other than the ones contributing to growth, which also explains why the C/Si ratio needs to be lower at these conditions to maintain high material quality as well as the observed saturation in deposition rates. Due to its independence of a chemical system and reactor configuration, the method paves the way for a general predictive CVD modeling tool.
  •  
40.
  • Drobyshev, Igor, et al. (författare)
  • Lifespan and mortality of old oaks - combining empirical and modelling approaches to support their management in Southern Sweden
  • 2008
  • Ingår i: Annals of Forest Science. - : Springer Science and Business Media LLC. - 1286-4560 .- 1297-966X. ; 65:4, s. 401-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Old oaks (Quercus robur L.) play an important role in the southern Scandinavian landscape by providing habitat for a wide range of species, a large proportion of them being currently on the National Redlists. To provide support for the management of these trees, we review data on oak mortality and formulate a mortality-driven stochastic model analysing interactions between mortality rate, oak recruitment rate into 100-150 age class, and amount of oaks older than 200 years. Empirical annual mortality rates varied between 0 and 13% with average 1.68%. Trees older 200 years had an average mortality rate of 1.1%. Oaks in the high density forests showed higher mortality (3.2%) as compared to the trees growing in the low density forests (1.2%). A 400-year long modelling exercises indicated that under current mortality rates (regular mortality being centred around 1% annually; and irregular mortality 7% with average return time of 13 years) the long-term maintenance of 20 trees older than 200 years per ha would require an input rate of 1 to 5 trees x year(-1) x ha(-1) into the 100-150 years old class. The modelling highlighted the importance of initial oak abundance affecting amount of old trees at the end of shorter (100 years) simulation period.
  •  
41.
  • Drobyshev, Igor, et al. (författare)
  • Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden
  • 2010
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 1872-7042 .- 0378-1127. ; 259:11, s. 2160-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify weather controls of beech diameter growth and masting in southern Sweden, we analyze records of monthly weather, regional masting record, and tree-ring chronologies from five beech-dominated stands. The results indicate a strong weather control of temporal pattern of masting events in southern Sweden over the second half of the 20th century. Negative summer temperature anomaly 2 years prior to a mast year, coupled with positive temperature anomaly in the year immediately preceding the same mast year, is a characteristic weather pattern associated with known mast years. Strong dependence of beech masting behavior on temperature explains the high degree of regional synchronization of masting events. Growth of beech in southern Sweden is strongly and negatively correlated with previous year's summer temperature and positively - with previous year's October temperature. The present study does not provide a conclusive answer in identifying a full set of direct and indirect effects of climatic variables controlling tree-ring growth, since the negative effect of previous year's summer temperature may be a result of a temperature-controlled increase in the beech nut production in the current year. Consistent and significant negative departures of ring-width index during mast years support the hypothesis about a trade-off between investment of bioassimilates into production of beech nuts and tree-ring growth. Alternative explanation of growth anomalies in mast years, relating such anomaly to a negative impact of previous year's growing season, was not supported by the data. We found a limited effect of masting on diameter growth in the following years, indicating that decline in the overall wood production, associated with heavy masting, is short term and typically occurs in the year of actual masting. (C) 2010 Elsevier B.V. All rights reserved.
  •  
42.
  • Dyverfeldt, Petter, et al. (författare)
  • MRI Turbulence Quantification
  • 2009
  • Ingår i: Proc. Intl. Soc. Mag. Reson. Med.. ; , s. 1858-
  • Konferensbidrag (refereegranskat)
  •  
43.
  • Dyverfeldt, Petter, et al. (författare)
  • On MRI turbulence quantification
  • 2009
  • Ingår i: Magnetic Resonance Imaging. - : Elsevier BV. - 0730-725X .- 1873-5894. ; 27:7, s. 913-922
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent flow, characterized by velocity fluctuations, accompanies many forms of cardiovascular disease and may contribute to their progression and hemodynamic consequences. Several studies have investigated the effects of turbulence on the magnetic resonance imaging (MRI) signal. Quantitative MRI turbulence measurements have recently been shown to have great potential for application both in human cardiovascular flow and in engineering flow. In this article, potential pitfalls and sources of error in MRI turbulence measurements are theoretically and numerically investigated. Data acquisition strategies suitable for turbulence quantification are outlined. The results show that the sensitivity of MRI turbulence measurements to intravoxel mean velocity variations is negligible, but that noise may degrade the estimates if the turbulence encoding parameter is set improperly. Different approaches for utilizing a given amount of scan time were shown to influence the dynamic range and the uncertainty in the turbulence estimates due to noise. The findings reported in this work may be valuable for both in vitro and in vivo studies employing MRI methods for turbulence quantification.
  •  
44.
  •  
45.
  • Ebbers, Tino, 1972-, et al. (författare)
  • Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI
  • 2001
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 45:5, s. 872-879
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate, easy-to-use, noninvasive cardiovascular pressure registration would be an important addition to the diagnostic armamentarium for assessment of cardiac function. A novel noninvasive and three-dimensional (3D) technique for estimation of relative cardiovascular pressures is presented. The relative pressure is calculated using the Navier-Stokes equations along user-defined lines placed within a time-resolved 3D phase contrast MRI dataset. The lines may be either straight or curved to follow an actual streamline. The technique is validated in an in vitro model and tested on in vivo cases of normal and abnormal transmitral pressure differences and intraaortic flow. The method supplements an intuitive visualization technique for cardiovascular flow, 3D particle trace visualization, with a quantifiable diagnostic parameter estimated from the same dataset.
  •  
46.
  • Ebbers, Tino, et al. (författare)
  • Myocordial segmentation of time-resolved 3D phase-contrast MRI
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Time-resolved three-dimensional (3D) phase-contrast MRI can be used to study 3D cardiac blood flow patterns and myocardial motion. The image contrast between myocardium and blood in 3D MRl is often inadequate for clear orientation and border delineation, however. To improve the accuracy and ease of segmentation, we developed a method based on a particle trace technique for time-resolved 3D cardiac velocity vector fields. A particle trace trajectory that follows the blood flow and the myocardial motion is obtained by integration of the velocity field over time. The myocardium can be differentiated by using the magnitude image data in combination with the trajectory's velocities and the expected behavior of the myocardial particle traces, that is, that traces starting in the myocardium will return to their starting point at the end of a cardiac cycle. The myocardial probability obtained in this way can be used for visualization, which eliminates the need for acquiring additional two-dimensional images. It also serves as the basis for border delineation, allowing quantification of important clinical parameters such as ventricular volume and mass.
  •  
47.
  • Ebbers, Tino, 1972-, et al. (författare)
  • Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart
  • 2002
  • Ingår i: Journal of Biomechanical Engineering. - : ASME International. - 0148-0731 .- 1528-8951. ; 124:3, s. 288-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding cardiac blood flow patterns is important in the assessment of cardiovascular function. Three-dimensional flow and relative pressure fields within the human left ventricle are demonstrated by combining velocity measurements with computational fluid mechanics methods. The velocity field throughout the left atrium and ventricle of a normal human heart is measured using time-resolved three-dimensional phase-contrast MRL. Subsequently, the time-resolved three-dimensional relative pressure is calculated from this velocity field using the pressure Poisson equation. Noninvasive simultaneous assessment of cardiac pressure and flow phenomena is an important new tool for studying cardiac fluid dynamics.
  •  
48.
  •  
49.
  • Ekman, Petter, 1988-, et al. (författare)
  • Accuracy and Speed for Scale-Resolving Simulations of the DrivAer Reference Model
  • 2019
  • Ingår i: WCX SAE World Congress Experience. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International.
  • Konferensbidrag (refereegranskat)abstract
    • In aerodynamic development of ground vehicles, the use of Computational Fluid Dynamics (CFD) is crucial for improving the aerodynamic performance, stability and comfort of the vehicle. Simulation time and accuracy are two key factors of a well working CFD procedure. Using scale-resolving simulations, accurate predictions of the flow field and aerodynamic forces are possible, but often leads to long simulation time. For a given solver, one of the most significant aspects of the simulation time/cost is the temporal resolution. In this study, this aspect is investigated using the realistic vehicle model DrivAer with the notchback geometry as the test case. To ensure a direct and accurate comparison with wind tunnel measurements, performed at TU Berlin, a large section of the wind tunnel is included in the simulation domain. All simulations are performed at a Reynolds number of 3.12 million, based on the vehicle length. Three spatial resolutions were compared, where it could be seen that a hybrid element mesh consisting of 102 million cells only revealed small differences to the finest mesh investigated, well as showing excellent agreement with wind tunnel measurements. An investigation of the temporal resolution is performed, in order to see its effect on the simulation time/cost and accuracy of the results. The finest temporal resolution resulted in a Courant-Friedrichs-Lewy number less than unity, while the coarsest reached a CFL number of around 100. From these results, it is seen that it is possible to reduce the simulation time with more than 90 % (CFL 20) and still keep sufficient accuracy of the forces and important features of the flow field.
  •  
50.
  • Ekman, Petter, 1988-, et al. (författare)
  • Aerodynamic Drag Reduction - from Conceptual Design on a Simplified Generic Model to Full-Scale Road Tests
  • 2015
  • Ingår i: SAE 2015 World Congress &amp; Exhibition. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International.
  • Konferensbidrag (refereegranskat)abstract
    • Road transportation by trucks is the major part of the goods transportations system in the European Union (EU), and there is a need for increased fuel efficiency. While truck manufacturers already spend significant resources in order to reduce the emissions from their vehicles, most truck manufacturers do not control the shape of the trailer and/or swap bodies. These devices are usually manufactured by different companies that cannot consider the overall aerodynamics around the complete vehicle.By use of Computational Fluid Dynamics (CFD) and previous wind tunnel experiments, the flow around a simplified generic tractor-trailer model has been investigated. With better understanding of the flow features around the tractor with attached trailer or swap bodies, an improved design of the trailer and swap body can be achieved, which is the aim for the project. Special emphasis is put on achieving simple, easy to install or implement drag-reducing geometrical modifications to the trailer or swap bodies that can be mounted on existing trucks.Reynolds-Averaged Navier-Stokes (RANS) simulations were used for the conceptual development phase where trends in drag reduction due to the modified geometries were studied using a parameter study, while more advanced scale resolving simulations (SRS) were used in order to investigate the details of the flow fields.The investigation indicates that aerodynamic drag reduction is possible with quite simple geometrical modifications. Some of the results have also been verified through road tests of vehicles in commercial use, which has shown reduced fuel consumption of up to 5%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 277
Typ av publikation
tidskriftsartikel (109)
konferensbidrag (96)
bokkapitel (35)
doktorsavhandling (15)
rapport (9)
annan publikation (9)
visa fler...
licentiatavhandling (3)
bok (1)
visa färre...
Typ av innehåll
refereegranskat (167)
övrigt vetenskapligt/konstnärligt (107)
populärvet., debatt m.m. (3)
Författare/redaktör
Karlsson, Matts (159)
Karlsson, Matts, 196 ... (88)
Lantz, Jonas (35)
Ingels, Jr, Neil B (34)
Ebbers, Tino (33)
Gårdhagen, Roland, 1 ... (21)
visa fler...
Gårdhagen, Roland (21)
Ebbers, Tino, 1972- (20)
Nadali Najafabadi, H ... (19)
Wigström, Lars, 1967 ... (18)
Kindberg, Katarina, ... (18)
Loyd, Dan, 1940- (16)
Andersson, Magnus (14)
Wranne, Bengt, 1940- (13)
Engvall, Jan, 1953- (12)
Länne, Toste (12)
Kinell, Mats (12)
Renner, Johan (12)
Svensson, Johan, 197 ... (12)
Utriainen, Esa (11)
Renner, Johan, 1977- (11)
Karlsson, Matts, Pro ... (10)
Wigström, Lars (9)
Bolger, Ann F, 1957- (9)
Ask, Per, 1950- (8)
Loyd, Dan (8)
Fyrenius, Anna, 1969 ... (8)
Bolger, Ann F (8)
Ingels, Neil B (8)
Henriksson, Lilian (8)
Lantz, Jonas, 1982- (8)
Engvall, Jan (7)
Carlhäll, Carljohan (7)
Dyverfeldt, Petter (7)
Ekman, Petter, 1988- (7)
Persson, Anders (6)
Nilsson, Urban (6)
Sigfridsson, Andreas (6)
Heiberg, Einar, 1973 ... (6)
Carlhäll, Carljohan, ... (6)
Wren, Joakim, 1973- (6)
Hooker, Andrew C. (5)
Holmström, Emma (5)
Heiberg, Einar (5)
Carlsson, Fredrik (5)
Wren, Joakim (5)
Ingels, NB (5)
Gupta, Vikas (5)
Haraldsson, Henrik (5)
Karlsson, Matts Inge ... (5)
visa färre...
Lärosäte
Linköpings universitet (251)
Uppsala universitet (8)
Lunds universitet (8)
Örebro universitet (6)
Sveriges Lantbruksuniversitet (6)
Karolinska Institutet (4)
visa fler...
Malmö universitet (3)
Kungliga Tekniska Högskolan (2)
Linnéuniversitetet (2)
Göteborgs universitet (1)
Naturvårdsverket (1)
visa färre...
Språk
Engelska (273)
Svenska (4)
Forskningsämne (UKÄ/SCB)
Teknik (119)
Medicin och hälsovetenskap (34)
Naturvetenskap (13)
Lantbruksvetenskap (9)
Samhällsvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy