SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kahma T. I.) "

Sökning: WFRF:(Kahma T. I.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kahma, T. I., et al. (författare)
  • Macrofauna Community Dynamics and Food Webs in the Canopy-forming Macroalgae and the Associated Detrital Subsidies
  • 2023
  • Ingår i: Estuaries and Coasts. - 1559-2723 .- 1559-2731. ; 46:5, s. 1345-1362
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary variability and the degradation and incorporation of macroalgae in key macroinvertebrate consumers were examined (1) in a monitoring field study including a natural attached canopy habitat and an adjacent habitat receiving natural accumulations of detritus, and (2) in a manipulative in situ experiment of macroalgal detritus at two different depths (3 and 6 m) in the archipelago of SW Finland. The monitoring field study, examining species-specific dietary responses across three sampling dates in natural macroalgal stands, showed that a pulse of drifting filamentous macroalgae shaped the dietary compositions of the abundant benthic macroinvertebrate consumers and that accumulations of drifting filamentous macroalgae were rapidly incorporated into the food web through epigrazers. The in situ field experiment simulating a natural accumulation event and the degradation process of Fucus vesiculosus during 60 days showed that algal decomposition progressed relatively slowly at both depths. Detectable increasing incorporation of Fucus-derived matter to epigrazers and detritivorous bivalves occurred after 2−3 weeks, while simultaneously the incorporation of filamentous algae decreased over time. Hence, the ecological role of decomposing F. vesiculosus might be more important in areas where the algal matter can accumulate for several months. The effect of depth influenced the food incorporation of typical epigrazers. The increasing depth from 3 to 6 m lowered the median proportion of Fucus-derived matter incorporated into the macrofauna community approximately by 10% points compared to the shallower depth of 3 m. 
  •  
2.
  • Weisse, R., et al. (författare)
  • Sea level dynamics and coastal erosion in the Baltic Sea region
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:3, s. 871-898
  • Tidskriftsartikel (refereegranskat)abstract
    • There are a large number of geophysical processes affecting sea level dynamics and coastal erosion in the Baltic Sea region. These processes operate on a large range of spatial and temporal scales and are observed in many other coastal regions worldwide. This, along with the outstanding number of long data records, makes the Baltic Sea a unique laboratory for advancing our knowledge on interactions between processes steering sea level and erosion in a climate change context. Processes contributing to sea level dynamics and coastal erosion in the Baltic Sea include the still ongoing viscoelastic response of the Earth to the last deglaciation, contributions from global and North Atlantic mean sea level changes, or contributions from wind waves affecting erosion and sediment transport along the subsiding southern Baltic Sea coast. Other examples are storm surges, seiches, or meteotsunamis which primarily contribute to sea level extremes. Such processes have undergone considerable variation and change in the past. For example, over approximately the past 50 years, the Baltic absolute (geocentric) mean sea level has risen at a rate slightly larger than the global average. In the northern parts of the Baltic Sea, due to vertical land movements, relative mean sea level has decreased. Sea level extremes are strongly linked to variability and changes in large-scale atmospheric circulation. The patterns and mechanisms contributing to erosion and accretion strongly depend on hydrodynamic conditions and their variability. For large parts of the sedimentary shores of the Baltic Sea, the wave climate and the angle at which the waves approach the nearshore region are the dominant factors, and coastline changes are highly sensitive to even small variations in these driving forces. Consequently, processes contributing to Baltic sea level dynamics and coastline change are expected to vary and to change in the future, leaving their imprint on future Baltic sea level and coastline change and variability. Because of the large number of contributing processes, their relevance for understanding global figures, and the outstanding data availability, global sea level research and research on coastline changes may greatly benefit from research undertaken in the Baltic Sea.
  •  
3.
  • Kahma, T. I., et al. (författare)
  • Macroalgae fuels coastal soft-sediment macrofauna : A triple-isotope approach across spatial scales
  • 2020
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 162
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow coastal zones may provide cross-habitat nutrient subsidies for benthic communities offshore, as macrophyte matter can drift to deeper sediments. To study the relative importance of carbon and nutrient flows derived from different primary food sources in a coastal ecosystem, the diets of clam Macoma balthica, polychaete Marenzelleria spp. and mussel Mytilus trossulus were examined across environmental gradients in the northern Baltic Sea using a triple-isotope approach (i.e. 13C, 15N and 34S) and Bayesian mixing models (MixSIAR). Our results suggest that in shallow habitats, production from Fucus vesiculosus is the primary energy source for M. balthica. The proportion of macroalgae-derived matter in the diet of M. balthica and Marenzelleria spp. decreased following a depth gradient. Our models for M. trossulus indicate that the pelagic POM dominates its diet. Our results indicate a trophic connectivity between shallow macrophyte-dominated and deeper habitats, which receive significant amounts of nutrient subsidies from shallower areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy