SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kajtez Janko) "

Sökning: WFRF:(Kajtez Janko)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birtele, Marcella, et al. (författare)
  • Single-cell transcriptional and functional analysis of dopaminergic neurons in organoid-like cultures derived from human fetal midbrain
  • 2022
  • Ingår i: Development: For advances in developmental biology and stem cells. - : The Company of Biologists. - 1477-9129. ; 149:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells (PSCs) for application in disease modeling, diagnostics, drug screening, and cell-based therapies for Parkinson's Disease (PD). An increased understanding of the timing and molecular mechanisms promoting the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from PSCs. Here, we used droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach revealed that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons, which can be used to guide stem cell-based therapies and disease modeling approaches in PD.
  •  
2.
  • Fiorenzano, Alessandro, et al. (författare)
  • Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.
  •  
3.
  • Giacomoni, Jessica, et al. (författare)
  • Protocol for optical clearing and imaging of fluorescently labeled ex vivo rat brain slices
  • 2023
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue clearing is commonly used for whole-brain imaging but seldom used for brain slices. Here, we present a simple protocol to slice, immunostain, and clear sections of adult rat brains for subsequent high-resolution confocal imaging. The protocol does not require toxic reagents or specialized equipment. We also provide instructions for culturing of rat brain slices free floating on permeable culture inserts, maintained in regular CO2 incubators, and handled only at media change.
  •  
4.
  • Kajtez, Janko, et al. (författare)
  • 3D biomaterial models of human brain disease
  • 2021
  • Ingår i: Neurochemistry International. - : Elsevier BV. - 0197-0186. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions. At the same time, biomaterials have been designed to provide cells in 3D with a microenvironment that mimics functional and structural aspects of the native extracellular matrix with increasing fidelity. In this article, we review the use of biomaterials in 3D in vitro models of neurological disorders with focus on hydrogel technology and with biochemical composition and physical properties of the in vivo environment as reference.
  •  
5.
  • Kajtez, Janko, et al. (författare)
  • 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
  •  
6.
  • Kajtez, Janko, et al. (författare)
  • Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs
  • 2022
  • Ingår i: Advanced science (Weinheim, Baden-Wurttemberg, Germany). - : Wiley. - 2198-3844. ; 9:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.
  •  
7.
  • Kajtez, Janko, et al. (författare)
  • Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores.
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term 'bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape.
  •  
8.
  • Pless, Christian J., et al. (författare)
  • Emerging strategies in 3D printed tissue models for in vitro biomedical research
  • 2022
  • Ingår i: Bioprinting : From Multidisciplinary Design to Emerging Opportunities - From Multidisciplinary Design to Emerging Opportunities. - 9780323854306 - 9780323854313 ; , s. 207-246
  • Bokkapitel (refereegranskat)abstract
    • 3D bioprinting has the potential to provide a unified framework for the manufacturing of tissue models for biomedical research, including drug discovery, disease modeling, and regenerative medicine. However, it remains challenging to 3D print replicas of human tissues that have accurate cell types, cellular densities, extracellular matrix compositions, and that can be assayed in a minimally invasive manner for chronic studies. Here, we review how recent breakthroughs in stem cell biology, tissue engineering, and materials science have led to novel 3D printing strategies that have the potential to solve these challenges.
  •  
9.
  • Rezaei, Babak, et al. (författare)
  • Modular 3D printed platform for fluidically connected human brain organoid culture
  • 2024
  • Ingår i: Biofabrication. - 1758-5082. ; 1:15014
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain organoid technology has transformed both basic and applied biomedical research and paved the way for novel insights into developmental processes and disease states of the human brain. While the use of brain organoids has been rapidly growing in the past decade, the accompanying bioengineering and biofabrication solutions have remained scarce. As a result, most brain organoid protocols still rely on commercially available tools and culturing platforms that had previously been established for different purposes, thus entailing suboptimal culturing conditions and excessive use of plasticware. To address these issues, we developed a 3D printing pipeline for the fabrication of tailor-made culturing platforms for fluidically connected but spatially separated brain organoid array culture. This all-in-one platform allows all culturing steps—from cellular aggregation, spheroid growth, hydrogel embedding, and organoid maturation—to be performed in a single well plate without the need for organoid manipulation or transfer. Importantly, the approach relies on accessible materials and widely available 3D printing equipment. Furthermore, the developed design principles are modular and highly customizable. As such, we believe that the presented technology can be easily adapted by other research groups and fuel further development of culturing tools and platforms for brain organoids and other 3D cellular systems.
  •  
10.
  • Sozzi, Edoardo, et al. (författare)
  • Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells
  • 2022
  • Ingår i: Current protocols. - : Wiley. - 2691-1299. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide and is caused by the degeneration and loss of dopamine (DA) neurons in the ventral midbrain (VM). The focal and progressive degeneration of DA neurons in the VM makes PD a particularly attractive target for cell-based therapies. Human pluripotent stem cells (hPSCs) offer unprecedented opportunities to model the development and functional properties of human DA neurons in a dish. The use of human in vitro models based on hPSCs has empowered studies of VM development and provided access to neurons expressing a particular disease-specific phenotype. Currently, hPSC differentiation is most routinely carried out in monolayer cultures, which do not properly recapitulate cell-cell interactions and the structural complexity of the brain. Moreover, 2D cultures are challenging to maintain long term, as the cells tend to detach from the plate and lose their functional characteristics. This precludes the possibility of mimicking later phases of DA neurogenesis and recreating the complexity of functional neural circuitries. Here, we describe protocols showing how to maintain hPSCs in an undifferentiated state and how to then drive these hPSCs into 3D regionalized VM organoids. After long-term culture, these VM organoids exhibit mature and post-mitotic molecular features, including neuromelanin pigments similar to those released in primate VMs. We also report a protocol describing how to efficiently perform immunohistochemistry and how to detect neuromelanin-containing DA neurons in VM organoids. Together, these protocols provide a 3D in vitro platform that can be used to better understand the molecular mechanisms underlying DA neuron function and disease and may serve as a powerful tool for designing more targeted disease-modifying therapies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Human pluripotent stem cell culture Basic Protocol 2: hPS cell differentiation for the generation of human ventral midbrain organoids Basic Protocol 3: Characterization of ventral midbrain organoids.
  •  
11.
  • Sozzi, Edoardo, et al. (författare)
  • Silk scaffolding drives self-assembly of functional and mature human brain organoids
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 10, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Human pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current in vitro brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery. In addition, cell stress and hypoxia resulting from long-term culture lead to incomplete maturation and cell death within the inner core. Here, we used a recombinant silk microfiber network as a scaffold to drive hPSCs to self-arrange into engineered cerebral organoids. Silk scaffolding promoted neuroectoderm formation and reduced heterogeneity of cellular organization within individual organoids. Bulk and single cell transcriptomics confirmed that silk cerebral organoids display more homogeneous and functionally mature neuronal properties than organoids grown in the absence of silk scaffold. Furthermore, oxygen sensing analysis showed that silk scaffolds create more favorable growth and differentiation conditions by facilitating the delivery of oxygen and nutrients. The silk scaffolding strategy appears to reduce intra-organoid variability and enhances self-organization into functionally mature human brain organoids.
  •  
12.
  • Vasudevan, Shashank, et al. (författare)
  • Leaky Optoelectrical Fiber for Optogenetic Stimulation and Electrochemical Detection of Dopamine Exocytosis from Human Dopaminergic Neurons
  • 2019
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 6:24
  • Tidskriftsartikel (refereegranskat)abstract
    • In Parkinson's disease, the degeneration of dopaminergic neurons in substantia nigra leads to a decrease in the physiological levels of dopamine in striatum. The existing dopaminergic therapies effectively alleviate the symptoms, albeit they do not revert the disease progression and result in significant adverse effects. Transplanting dopaminergic neurons derived from stem cells could restore dopamine levels without additional motor complications. However, the transplanted cells disperse in vivo and it is not possible to stimulate them on demand to modulate dopamine release to prevent dyskinesia. In order to address these issues, this paper presents a multifunctional leaky optoelectrical fiber for potential neuromodulation and as a cell substrate for application in combined optogenetic stem cell therapy. Pyrolytic carbon coated optical fibers are laser ablated to pattern micro-optical windows to permit light leakage over a large area. The pyrolytic carbon acts as an excellent electrode for the electrochemical detection of dopamine. Human neural stem cells are genetically modified to express the light sensitive opsin channelrhodopsin-2 and are differentiated into dopaminergic neurons on the leaky optoelectrical fiber. Finally, light leaking from the micro-optical windows is used to stimulate the dopaminergic neurons resulting in the release of dopamine that is detected in real-time using chronoamperometry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy