SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalinowski Birgitta E.) "

Sökning: WFRF:(Kalinowski Birgitta E.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mathurin, Frédéric A., et al. (författare)
  • Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network.
  • 2012
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 46:23, s. 12779-12786
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to assess how the excavation of the Äspö Hard Rock Laboratory tunnel has impacted on sources and mixing of groundwater in fractured crystalline (granitoidic) bedrock. The tunnel is 3600 m long and extends to a depth of 460 m at a coastal site in Boreal Europe. The study builds on a unique data set consisting of 1117 observations on chloride and δ(18)O of groundwater collected from a total of 356 packed-off fractures between 1987 and 2011. On the basis of the values of these two variables in selected source waters, a classification system was developed to relate the groundwater observations to source and postinfiltration mixing phenomena. The results show that the groundwater has multiple sources and a complex history of transport and mixing, and is composed of at least glacial water, marine water, recent meteoric water, and an old saline water. The tunnel excavation has had a large impact on flow, sources, and mixing of the groundwater. Important phenomena include upflow of deep-lying saline water, extensive intrusion of current Baltic Sea water, and substantial temporal variability of chloride and δ(18)O in many fractures.
  •  
2.
  • Mathurin, Frédéric A., et al. (författare)
  • REE and Y in groundwater in the upper 1.2 km of Proterozoic granitoids (Eastern Sweden) - Assessing the role of composition and origin of groundwaters, geochemistry of fractures, and organic/inorganic aqueous complexation
  • 2014
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 144, s. 342-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Yttrium and rare earth elements (YREEs) are studied in groundwater in the shallow regolith aquifer and the fracture networks of the upper 1.2 km of Paleoproterozoic granitoids in boreal Europe (Laxemar and Forsmark areas, Sweden). The study includes groundwater sampled via a total of 34 shallow boreholes reaching the bottom of the regolith aquifer, and 72 deep boreholes with equipment designed for retrieval of representative groundwater at controlled depths in the fractured bedrock. The groundwater composition differs substantially between regolith and fracture groundwater and between areas, which affects the dissolved YREE features, including concentrations and NASC normalized patterns. In the fresh groundwater in the regolith aquifers, highest YREE concentrations occur (10th and 90th percentile; Laxemar: 4.4-82 mu g L-1; Forsmark: 1.9-19 mu g L-1), especially in the slightly acidic groundwater (pH: 6.3-7.2 - Laxemar), where the normalized YREE patterns are slightly enriched in light REEs (La-NASC/Y-NASC: 1.1-2.4). In the recharge areas, where redox potentials of the regolith groundwater is more moderate, negative Ce anomaly (Laxemar: 0.37-0.45; Forsmark: 0.15-0.92) and positive Y anomaly (mainly in Forsmark: 1.0-1.7) are systematically more pronounced than in discharge areas. The significant correlations between the YREE features and dissolved organic carbon, minor elements, and somewhat pH suggest a strong control of humic substances (HSs) together with Al rich colloids and redox sensitive Fe-Mn hydrous precipitates on the dissolved YREE pools. In the bedrock fractures, the groundwater is circumneutral to slightly basic and displays YREE concentrations that are at least one order of magnitude lower than the regolith groundwater, and commonly below detection limit in the deep brackish and saline groundwater, with some exceptions such as La and Y. At intermediate depth (>50 m), where groundwater of meteoric origin percolates, the La-NASC/Y-NASC values moderately to substantially decrease (Laxemar: 0.24-2.65; Forsmark: 0.02-0.06) and Y and Ce anomalies are negligible as compared to the regolith groundwater. Aqueous speciation modeling predicts substantial binding of dissolved Y and La, respectively, to HSs. This, in turn, suggests that the features of the YREE pool in the meteoric fracture groundwater are dominantly controlled by the capacity of fracture minerals to sorb HS ligands inherited from the overlying terrestrial regolith. In the deep bedrock fractures (>100/200 m), the YREE features vary substantially with the groundwater paleo-origin. In Laxemar, where groundwater with pronounced glacial origin percolates, the YREE concentrations decrease with increasing mixing fraction of glacial melt water. There, the dissolved YREEs are mostly bound to HSs, and inherited their fractionation features (La-NASC/Y-NASC: 0.15-2.1) from water-rock interaction in the intermediate bedrock fractures. In Forsmark, the YREE and heavy REE enrichment (La-NASC/Y-NASC: 0.007-0.23) are more systematic in the groundwater with pronounced marine origin, due to water-mineral interactions in the sea sediment and in the fractures while infiltrating and percolating. YREE features significantly change in the deep saline groundwater with a long residence time, which displays La-NASC/Y-NASC similar to those of the local bedrock. The findings of this study are relevant in terms of safety assessment for nuclear waste disposal in crystalline rock carrying groundwater influenced by various paleo-climatic recharges. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
3.
  • Edberg, Frida, et al. (författare)
  • Mobilization of metals from uranium mine waste : the role of pyoverdines produced by Pseudomonas fluorescens
  • 2010
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 8:4, s. 278-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Microorganisms produce chelating agents, such as siderophores and other ligands, which allow them to mobilize and scavenge essential elements from the environment when bioavailability is low. To better understand the effects of biologically mediated leaching of metals from mine waste, Pseudomonas fluorescens was cultivated in the presence of processed ore from the former uranium mine in Ranstad, southern Sweden. Light conditions, the concentration of the mineral source and oxygen availability were varied. The presence of ore in the culture flasks enhanced bacterial growth and raised the pH of the culture medium. Increasing the amount of ore or enhancing aeration of the medium further encouraged cell growth and pH rise. Bacteria mobilized Fe, Ni and Co from the ore. Fe-siderophore complexes were detected and estimated to be present at approximately 9 μm. In the presence of bacteria and light, dissolved Fe and U concentrations were higher compared to dark conditions. Increasing the amount of ore resulted in higher dissolved Ni concentrations but lower dissolved Fe, most likely due to precipitate formation. Data from this study support siderophore production by bacteria that allowed mobilization of essential nutrients from the processed ore. However, the availability of potentially toxic metals like Ni and U may also be enhanced. Microbial-promoted mobilization could contribute to leaching of toxic metals in current and historic mining areas. This process should be considered during design and implementation of remediation projects where trace metals are of environmental concern.
  •  
4.
  • Kalinowski, Birgitta E., 1900, et al. (författare)
  • Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad
  • 2004
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061. ; 122:2-4, s. 177-194
  • Tidskriftsartikel (refereegranskat)abstract
    • High levels of heavy metals have been found in the surroundings of the closed uranium (U) mine in Ranstad in southern Sweden. These findings cannot be explained entirely by abiotic processes. It was not until recently that biology was taken into account in the discussion about mobilization of metals at this site. It is well known that bacteria produce short-chain organic acids and element-specific ligands (siderophores) that are able to change pH and enhance chelation, which results in increased mobilization of many trace elements. Other (nonessential) elements, such as thallium (Tl), lanthanides, and actinides, may also be mobilized as a result of such bacterial action. This paper describes the mobilization of U and other elements from U ores by bacteria. Three common siderophore-producing bacterial species, Pseudomonas fluorescens, Shewanella putrefaciens and Pseudomonas stutzeri, were incubated in a chemically defined medium supplemented with tailings material with a content of 0.0013% U by weight, which had been exposed to natural weathering for 30 years. Nonleached U ore (0.61% U by weight) from the same area was incubated with P. fluorescens and S. putrefaciens for comparison. P. fluorescens grown with ore caused a change in pH in the growth medium from 4.7 to 9.3, which was significantly higher than for the other two species, for which pH was about 5.2. P. fluorescens was the only species that thrived and mobilized measurable amounts of U from the two ores, leaching out 0.0010.005% of the total amount of U from both. The release of U is attributed to the production of pyoverdine chelators, since U could not be detected either in sterile controls or in the experiments with the other two bacteria. P. fluorescens also doubled the chromium (Cr) concentration in solution as compared with the sterile controls, whereas P. stutzeri and S. putrefaciens caused a five to sixfold increase in Cr concentration. Thallium, cobalt (Co), zinc (Zn), manganese (Mn), and vanadium (V) concentrations initially resembled those in the sterile controls, but from day 2 of the experiment, a decrease was observed. The difference in leaching behavior between the bacteria used in this study is likely to have been due to the production of different chelators rather than being an effect of pH, since many metals have low solubility at neutral to alkaline pH. This study using laboratory incubations shows that mobilization of U from ore can occur aerobically at neutral to alkaline conditions, which may be an important process behind the high content of heavy metals in the surroundings of the closed U mine at Ranstad.
  •  
5.
  • Kalinowski, Birgitta E., et al. (författare)
  • Microbial mobilization of uranium from shale mine waste
  • 2006
  • Ingår i: Geomicrobiology Journal. - : Informa UK Limited. - 0149-0451 .- 1521-0529. ; 23:3-4, s. 157-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The alum shale in the Billingen area in southern Sweden was mined in Ranstad for 5 years during the 1960s. The crushed tailings (processed and unprocessed) were left behind when the Ranstad mine was closed that has caused leaching of metals to the surroundings. The siderophore producing bacterium Pseudomonas fluorescens (sp, SE Sweden) was grown in batch cultures for 5 to 8 days with naturally weathered (unprocessed) uranium ore (0.0029% U by weight), kolm (0.52% U by weight) and acid-leached ore (0.0099% U by weight) in chemically defined media (unbuffered and buffered). Pseudomonas fluorescens grown with ore and unbuffered medium changed the pH from 4.7 to 9.3 and leached out 0.016 to 0.9% (normalized to surface area) of the total amount of U from the different ores. Incubation of the acid-leached ore with bacteria in buffered medium leached out 0.04% of the total U. Uranium was leached out selectively at all conditions, but this could be a pH effect, as pH increased at the same time as the U concentrations did. The observed release of Fe was most likely attributed to the production of microbial siderophores (Fe3+ specific chelators) since Fe3+ has a low solubility at pH > 4. As siderophores contain a number of chelating groups they may still function as complexators even in partly degraded form also for other metals than Fe. Thus, the production of microbial chelators could contribute to the elevated metal concentrations in the drainage water from the closed Ranstad mine, as abiotic processes cannot fully explain these high metal concentrations. In the extension: ligand promoted leaching of toxic elements could also be the key to bioremediation as there is a need for nontoxic cleanup methods for metal contaminated sites.
  •  
6.
  • Mathurin, Frédéric A. (författare)
  • Origin and mobility of major and key trace elements (Cs, YREEs) in fracture groundwater in the upper 1.2 kilometres of coastal granitoids : Implications for future repositories of spent nuclear fuel
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on the chemical and isotopic features of groundwater residing in the upper 1.2 km of sparsely fractured crystalline bedrock of the Baltic Shield. The work is based on previous understanding of the groundwater origin and its evolution in the fractured bedrock of the Äspö Hard Rock Laboratory (underground tunnel and facilities) and in two candidate coastal areas (Laxemar and Forsmark) investigated by the Swedish Nuclear Fuel and Waste Management Company (SKB) for future construction of a nuclear waste repository. In order to assess the origin and the apparent mobility of major elements and key trace elements (Cs and YREEs) in this difficult-to-reach deep environment, new (and previously published) data of SKBs hydrogeochemical monitoring programme was iteratively characterised and integrated in phenomenological models. The overall aim was to improve the integration between groundwater mixing and in situ water-rock interaction processes in deep coastal crystalline bedrock under natural and/or disturbed (i.e., dynamic) flow conditions induced by the presence of a tunnel system.The multiple origins (glacial, marine, meteoric and allochthonous) of the fracture groundwater resulted in a large range of concentrations for dissolved major and trace elements in the studied bedrock. Dependent on the current flow conditions, the apparent mobility of dissolved elements was generally challenging to identify in the deep fractured bedrock under natural flow conditions. There, the relatively long residence time of most of the various groundwater types prevented to clearly differentiate the (apparent) fast retention processes from slow but active processes on a long-term perspective. Both processes alter the primary hydrochemical composition mainly imposed by the mixing between the dominant sources of groundwater. Nevertheless, in the particular case of YREEs, their generally low natural concentrations and predominant binding to organic colloids in most palaeo- (and modern meteoric) groundwaters (independently of the flow conditions) indicated strong active sorption onto minerals and physical filtration of organic colloids in the fractures. Together, these properties tend to minimise the mobility of dissolved YREEs and to stabilise their concentrations and fractionation patterns during the long residence time of the groundwaters.At the Äspö HRL, an analogue (in a broad sense) of future repositories for high-level and long-lived radioactive wastes, changes in groundwater origin and salinity took place rapidly in subvertical fracture zones and progressively within the sparsely fractured deep rock domains. The changes resulted either from partial-to-substantial replacement of palaeo-groundwater by modern surface/shallow ground-water or induced dynamic up-flow of deep-lying saline groundwater. The hydrogeochemical instability near the underground facility during excavation to operational phase helped to assess qualitatively – and in some case differentiate quantitatively – the combined role of mixing, short-term and long-term reactions on the chemical composition of groundwater and the mobility of major elements and Cs within fracture zones and the sparsely fractured rock domains.Collectively, the findings of the individual studies showed that the composition of intruded past or modern marine groundwater was likely to affect the natural retention properties/reactivity of the bedrock towards dissolved species at repository depth. For instance, the intrusion of modern seawater induced a desorption process of some dissolved species originally present on the exchange sites of the clayish fault gouge material in the fractures. This contributed to an apparent increase of the abundance level of dissolved cations naturally occurring in relatively moderate (i.e., K and Mg) and trace (i.e., Cs) concentrations in the fracture groundwaters.The general understanding of the current hydrogeochemical conditions in deep crystalline bedrock is crucial when predicting future changes in groundwater chemistry (i.e., climatic cycles), which in turn might be of relevance to the long-term integrity of the KBS-3 repository method developed for isolating the nuclear waste from the surficial environment and biosphere.
  •  
7.
  • Osterholz, Helena, et al. (författare)
  • Terrigenous dissolved organic matter persists in the energy-limited deep groundwaters of the Fennoscandian Shield
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The deep terrestrial biosphere encompasses the life below the photosynthesis-fueled surface that perseveres in typically nutrient and energy depleted anoxic groundwaters. The composition and cycling of this vast dissolved organic matter (DOM) reservoir relevant to the global carbon cycle remains to be deciphered. Here we show that recent Baltic Sea-influenced to ancient pre-Holocene saline Fennoscandian Shield deep bedrock fracture waters carried DOM with a strong terrigenous signature and varying contributions from abiotic and biotic processes. Removal of easily degraded carbon at the surface-to-groundwater transition and corresponding microbial community assembly processes likely resulted in the highly similar DOM signatures across the notably different water types that selected for a core microbiome. In combination with the aliphatic character, depleted δ13C signatures in DOM indicated recent microbial production in the oldest, saline groundwater. Our study revealed the persistence of terrestrially-sourced carbon in severely energy limited deep continental groundwaters supporting deep microbial life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy