SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalupin D) "

Sökning: WFRF:(Kalupin D)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
4.
  •  
5.
  • Falchetto, G. L., et al. (författare)
  • The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 54:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application.The equilibrium reconstruction and linear magnetohydrodynamic (MHD) stability simulation chain was applied, in particular, to the analysis of the edgeMHDstability of ASDEX Upgrade type-I ELMy H-mode discharges and ITER hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different launching conditions from the equatorial and upper launcher, showing good agreement of the computed absorbed power and driven current. Selected achievements and scientific workflow applications targeting key modelling topics and physics problems are also presented, showing the current status of the ITM-TF modelling suite.
  •  
6.
  • Litaudon, X., et al. (författare)
  • EUROfusion-theory and advanced simulation coordination (E-TASC): programme and the role of high performance computing
  • 2022
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 64:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is a written summary of an overview oral presentation given at the 1st Spanish Fusion High Performance Computer (HPC) Workshop that took place on the 27 November 2020 as an online event. Given that over the next few years ITER24 will move to its operation phase and the European-DEMO design will be significantly advanced, the EUROfusion consortium has initiated a coordination effort in theory and advanced simulation to address some of the challenges of the fusion research in Horizon EUROPE (2021-2027), i.e. the next EU Framework Programme for Research and Technological Development. This initiative has been called E-TASC, which stands for EUROfusion-Theory and Advanced Simulation Coordination. The general and guiding principles of E-TASC are summarized in this paper. In addition, an overview of the scientific results obtained in the pilot phase (2019-2020) of E-TASC are provided while highlighting the importance of the required progress in computational methods and HPC techniques. In the initial phase, five pilot theory and simulation tasks were initiated: towards a validated predictive capability of the low to high transition and pedestal physics; runaway electrons in tokamak disruptions in the presence of massive material injection; fast code for the calculation of neoclassical toroidal viscosity in stellarators and tokamaks; development of a neutral gas kinetics modular code; European edge and boundary code for reactor-relevant devices. In this paper, we report on recent progress made by each of these projects.
  •  
7.
  • Kalupin, D., et al. (författare)
  • Numerical analysis of JET discharges with the European Transport Simulator
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:12, s. article nr. 123007-
  • Tidskriftsartikel (refereegranskat)abstract
    • The 'European Transport Simulator' (ETS) (Coster et al 2010 IEEE Trans. Plasma Sci. 38 2085-92, Kalupin et al 2011 Proc. 38th EPS Conf. on Plasma Physics (Strasbourg, France, 2011) vol 35G (ECA) P. 4.111) is the new modular package for 1D discharge evolution developed within the EFDA Integrated Tokamak Modelling (ITM) Task Force. It consists of precompiled physics modules combined into a workflow through standardized input/output data structures. Ultimately, the ETS will allow for an entire discharge simulation from the start up until the current termination phase, including controllers and sub-systems. The paper presents the current status of the ETS towards this ultimate goal. It discusses the design of the workflow, the validation and verification of its components on the example of impurity solver and demonstrates a proof-of-principles coupling of a local gyrofluid model for turbulent transport to the ETS. It also presents the first results on the application of the ETS to JET tokamak discharges with the ITER like wall. It studies the correlations of the radiation from impurity to the choice of the sources and transport coefficients.
  •  
8.
  • Voitsekhovitch, I., et al. (författare)
  • Integrated modelling for tokamak plasma: Physics and scenario optimisation
  • 2012
  • Ingår i: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 1314-1317
  • Konferensbidrag (refereegranskat)abstract
    • Simulations of JET and AUG HS with the GLF23 model show that the observed core confinement improvement can be partly explained by the beneficial s/q effect on the ITG driven transport while the effect of the ExB shear stabilisation is weaker than in H-mode plasmas. Strong stabilising effect of βe on the ITG turbulence has been found, but the transport reduction due to this effect can be limited by the onset of the KBM mode at high βe. The simulations of toroidal rotation in HS with the GLF23 model give an indication of the toroidal momentum pinch (Pr
  •  
9.
  •  
10.
  •  
11.
  • Imbeaux, F., et al. (författare)
  • A generic data structure for integrated modelling of tokamak physics and subsystems
  • 2010
  • Ingår i: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 181:6, s. 987-998
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types This ambitious goal requires new concepts of data structure and workflow organisation, which are described for the first time in this paper The backbone of the system is a physics- and workflow-oriented data structure which allows for the deployment of a fully modular and flexible workflow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues (C) 2010 Elsevier B.V All rights reserved
  •  
12.
  • Imbeaux, F., et al. (författare)
  • Data structure for the European Integrated Tokamak Modelling Task Force
  • 2008
  • Ingår i: 35th European Physical Society Conference on Plasma Physics, EPS 2008 Combined with the 10th International Workshop on Fast Ignition of Fusion Targets; Hersonissos, Crete; Greece; 9 June 2008 through 13 June 2008. - 9781622763351 ; 32:2, s. 1126-1129
  • Konferensbidrag (refereegranskat)
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Pokol, Gergö, 1979, et al. (författare)
  • Runaway electron modelling in the self-consistent core European Transport Simulator
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Relativistic runaway electrons are a major concern in tokamaks. Although significant theoretical development had been undertaken in recent decades, we still lack a self-consistent simulator that could simultaneously capture all aspects of this phenomenon. The European framework for Integrated Modelling (EU-IM) facilitates the integration of different plasma simulation tools by providing a standard data structure for communication that enables relatively easy integration of different physics codes. A three-level modelling approach was adopted for runaway electron simulations within the EU-IM. Recently, a number of runaway electron modelling modules have been integrated into this framework. The first level of modelling (Runaway Indicator) is limited to the indication if runaway electron generation is possible or likely. The second level (Runaway Fluid) adopts an approach similar to e.g. the GO code, using analytical formulas to estimate changes in the runaway electron current density. The third level is based on the solution of the electron kinetics. One such code is LUKE that can handle the toroidicity-induced effects by solving the bounce-averaged Fokker-Planck equation. Another approach is used in NORSE, which features a fully nonlinear collision operator that makes it capable of simulating major changes in the electron distribution, for example slide-away. Both codes handle the effect of radiation on the runaway distribution. These runaway-electron modelling codes are in different stages of integration into the EU-IM infrastructure, and into the European Transport Simulator (ETS), which is a fully capable modular 1.5D core transport simulator. The ETS with Runaway Fluid was benchmarked to the GO code implementing similar physics. Coherent integration of kinetic solvers requires more effort on the coupling, especially regarding the definition of the boundary between runaway and thermal populations, and on consistent calculation of resistivity. Some of these issues are discussed.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Moradi, Sara, 1981, et al. (författare)
  • Modeling of energy confinement improvement in high power JET discharges with neon seeding
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 54:1, s. 015004-
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to reduce the heat load to the wall, in particular in the presence of a metallic wall, the radiated fraction is increased by means of impurity seeding. This paper aims at investigating qualitatively the balance between a degradation of the edge confinement and a potential reduction of the core turbulent transport due to the increase of effective charge, Zeff. The pedestal degradation due to the Ne seeding is taken as input. The impact of Zeff and radiative loss on the heat transport are modeled with the quasi-linear 1D fluid code RITM. The input parameters are taken from a series of Ne seeded discharges conducted in JET. Discharges with D, D + Ne and Ne only fueling are qualitatively analyzed. The model recovers the experimentally observed fact that, while the confinement is degraded from the D to the D + Ne seeded plasma, it is improved from the D + Ne to the Ne only seeded plasma.
  •  
21.
  • Owsiak, M., et al. (författare)
  • Running simultaneous Kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows
  • 2016
  • Ingår i: Procedia Computer Science. - : Elsevier. - 1877-0509. ; , s. 690-699
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present an approach taken to run multiple Kepler sessions at the same time. This kind of execution is one of the requirements for Integrated Tokamak Modelling platform developed by the Nuclear Fusion community within the context of EUROFusion project [2]. The platform is unique and original: it entails the development of a comprehensive and completely generic tokamak simulator including both the physics and the machine, which can be applied for any fusion device. All components are linked inside work ows. This approach allows complex coupling of various algorithms while at the same time provides consistency. Work ows are composed of Kepler and Ptolemy II elements as well as set of the native libraries written in various languages (Fortran, C, C++). In addition to that, there are Python based components that are used for visualization of results as well as for pre/post processing. At the bottom of all these components there is a database layer that may vary between software releases, and require di erent version of access libraries. The community is using shared virtual research environment to prepare and execute work ows. All these constraints make running multiple Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a must - to reduce computation time and to make it possible to run released codes while working with new software at the same time. In this paper we present our approach to solve this issue and examples that show its correctness.
  •  
22.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy