SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kanatani S) "

Sökning: WFRF:(Kanatani S)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Gilvesy, A., et al. (författare)
  • Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus–pericoerulear complex by three-dimensional imaging
  • 2022
  • Ingår i: Acta Neuropathologica. - : Springer Nature. - 0001-6322 .- 1432-0533. ; 144:4, s. 651-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer’s disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0–6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer’s disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau. 
  •  
5.
  • Kanatani, S, et al. (författare)
  • Imaging cleared tissues made easy
  • 2022
  • Ingår i: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 19:5, s. 527-529
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Kanatani, S, et al. (författare)
  • The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 112:36, s. E4985-E4994
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently the preoptic area (POa) has been shown to be a source of GABAergic neurons in the medial amygdala and cerebral cortex, where they are thought to play a pivotal role in emotions and intelligence, respectively. However, it is unknown how the POa-derived neurons migrate and selectively segregate into either the amygdala or cortex. By using focal in utero labeling of the POa, we show that switching on/off the transcription factor COUP-TFII (Chicken ovalbumin upstream promoter transcription factor II) and the receptor Neuropilin-2 (Nrp2) directs the POa-derived neurons toward either the amygdala or cortex. Our study revealed an essential role of COUP-TFII/Nrp2 expression dynamics in the development of the amygdala and cortex.
  •  
7.
  •  
8.
  • Louhivuori, L, et al. (författare)
  • Predicting a tumour's drug uptake
  • 2018
  • Ingår i: Nature biomedical engineering. - : Springer Science and Business Media LLC. - 2157-846X. ; 2:10, s. 717-718
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  • McLean, Kyle Jarrod, et al. (författare)
  • Generation of Transmission-Competent Human Malaria Parasites with Chromosomally-Integrated Fluorescent Reporters
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Malaria parasites have a complex life cycle that includes specialized stages for transmission between their mosquito and human hosts. These stages are an understudied part of the lifecycle yet targeting them is an essential component of the effort to shrink the malaria map. The human parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria. Our goal was to generate transgenic P. falciparum lines that could complete the lifecycle and produce fluorescent transmission stages for more in-depth and high-throughput studies. Using zinc-finger nuclease technology to engineer an integration site, we generated three transgenic P. falciparum lines in which tdtomato or gfp were stably integrated into the genome. Expression was driven by either stage-specific peg4 and csp promoters or the constitutive ef1 alpha promoter. Phenotypic characterization of these lines demonstrates that they complete the life cycle with high infection rates and give rise to fluorescent mosquito stages. The transmission stages are sufficiently bright for intra-vital imaging, flow cytometry and scalable screening of chemical inhibitors and inhibitory antibodies.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Venero, J. L., et al. (författare)
  • ARG1 expression in basal forebrain microglia modulates hippocampal innervation and cognition during postnatal development
  • 2023
  • Ingår i: Glia. - : John Wiley & Sons. - 0894-1491 .- 1098-1136. ; 71:Suppl. 1, s. E512-E512
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Diversity within microglia, the resident brain immune cells, is reported. Whether microglial subsets constitute different subtypes with intrinsic properties and unique functions has not been fully elucidated. Here, we describe a microglial subtype characterized by the expression of the enzyme Arginase-1, i.e.Arg1+microglia, which is found predominantly in the cholinergic neuron-rich forebrain region during early postnatal development. Arg1+microgliacontain cellular inclusions and exhibit a distinct molecular signature including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3and Mgl2. Arg1-knockout in microglia results in a deficient cholinergic innervation along with impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, impaired long-term potentiation and cognitive behavioural deficiencies in female mice. Our results expand on microglia diversity and provide insights into distinctive spatiotemporal functions exerted by microglial subtypes.
  •  
15.
  • Zhang, SB, et al. (författare)
  • GIT1 protects against breast cancer growth through negative regulation of Notch
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 1537-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperactive Notch signalling is frequently observed in breast cancer and correlates with poor prognosis. However, relatively few mutations in the core Notch signalling pathway have been identified in breast cancer, suggesting that as yet unknown mechanisms increase Notch activity. Here we show that increased expression levels of GIT1 correlate with high relapse-free survival in oestrogen receptor-negative (ER(-)) breast cancer patients and that GIT1 mediates negative regulation of Notch. GIT1 knockdown in ER(-) breast tumour cells increased signalling downstream of Notch and activity of aldehyde dehydrogenase, a predictor of poor clinical outcome. GIT1 interacts with the Notch intracellular domain (ICD) and influences signalling by inhibiting the cytoplasm-to-nucleus transport of the Notch ICD. In xenograft experiments, overexpression of GIT1 in ER(-) cells prevented or reduced Notch-driven tumour formation. These results identify GIT1 as a modulator of Notch signalling and a guardian against breast cancer growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy