SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kanduri Chandrasekhar 1967) "

Sökning: WFRF:(Kanduri Chandrasekhar 1967)

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wernig-Zorc, Sara, et al. (författare)
  • Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia.
  • 2019
  • Ingår i: Epigenetics & chromatin. - : Springer Science and Business Media LLC. - 1756-8935. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic lymphocytic leukemia (CLL) has been a good model system to understand the functional role of 5-methylcytosine (5-mC) in cancer progression. More recently, an oxidized form of 5-mC, 5-hydroxymethylcytosine (5-hmC) has gained lot of attention as a regulatory epigenetic modification with prognostic and diagnostic implications for several cancers. However, there is no global study exploring the role of 5-hydroxymethylcytosine (5-hmC) levels in CLL. Herein, using mass spectrometry and hMeDIP-sequencing, we analysed the dynamics of 5-hmC during B cell maturation and CLL pathogenesis.We show that naïve B-cells had higher levels of 5-hmC and 5-mC compared to non-class switched and class-switched memory B-cells. We found a significant decrease in global 5-mC levels in CLL patients (n=15) compared to naïve and memory B cells, with no changes detected between the CLL prognostic groups. On the other hand, global 5-hmC levels of CLL patients were similar to memory B cells and reduced compared to naïve B cells. Interestingly, 5-hmC levels were increased at regulatory regions such as gene-body, CpG island shores and shelves and 5-hmC distribution over the gene-body positively correlated with degree of transcriptional activity. Importantly, CLL samples showed aberrant 5-hmC and 5-mC pattern over gene-body compared to well-defined patterns in normal B-cells. Integrated analysis of 5-hmC and RNA-sequencing from CLL datasets identified three novel oncogenic drivers that could have potential roles in CLL development and progression.Thus, our study suggests that the global loss of 5-hmC, accompanied by its significant increase at the gene regulatory regions, constitute a novel hallmark of CLL pathogenesis. Our combined analysis of 5-mC and 5-hmC sequencing provided insights into the potential role of 5-hmC in modulating gene expression changes during CLL pathogenesis.
  •  
2.
  • Ali, Mohamad Moustafa, et al. (författare)
  • LY6K-AS lncRNA is a lung adenocarcinoma prognostic biomarker and regulator of mitotic progression.
  • 2021
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 40:13, s. 2463-2478
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in genomics unraveled several actionable mutational drivers in lung cancer, leading to promising therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. However, the tumors' acquired resistance to the newly-developed as well as existing therapies restricts life quality improvements. Therefore, we investigated the noncoding portion of the human transcriptome in search of alternative actionable targets. We identified an antisense transcript, LY6K-AS, with elevated expression in lung adenocarcinoma (LUAD) patients, and its higher expression in LUAD patients predicts poor survival outcomes. LY6K-AS abrogation interfered with the mitotic progression of lung cancer cells resulting in unfaithful chromosomal segregation. LY6K-AS interacts with and stabilizes 14-3-3 proteins to regulate the transcription of kinetochore and mitotic checkpoint proteins. We also show that LY6K-AS regulates the levels of histone H3 lysine 4 trimethylation (H3K4me3) at the promoters of kinetochore members. Cisplatin treatment and LY6K-AS silencing affect many common pathways enriched in cell cycle-related functions. LY6K-AS silencing affects the growth of xenografts derived from wildtype and cisplatin-resistant lung cancer cells. Collectively, these data indicate that LY6K-AS silencing is a promising therapeutic option for LUAD that inhibits oncogenic mitotic progression.
  •  
3.
  • Frank, Stefan, et al. (författare)
  • yylncT Defines a Class of Divergently Transcribed lncRNAs and Safeguards the T-mediated Mesodermal Commitment of Human PSCs.
  • 2019
  • Ingår i: Cell stem cell. - : Elsevier BV. - 1875-9777 .- 1934-5909. ; 24:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Human protein-coding genes are often accompanied by divergently transcribed non-coding RNAs whose functions, especially in cell fate decisions, are poorly understood. Using an hESC-based cardiac differentiation model, we define a class of divergent lncRNAs, termed yin yang lncRNAs (yylncRNAs), that mirror the cell-type-specific expression pattern of their protein-coding counterparts. yylncRNAs arepreferentially encoded from the genomic loci ofkey developmental cell fate regulators. Most yylncRNAs are spliced polyadenylated transcripts showing comparable expression patterns invivo inmouse and in human embryos. Signifying theirdevelopmental function, the key mesoderm specifier BRACHYURY (T) is accompanied by yylncT, whichlocalizes to the active T locus during mesoderm commitment. yylncT binds the de novo DNA methyltransferase DNMT3B, and its transcript is required for activation of the T locus, with yylncTdepletion specifically abolishing mesodermal commitment. Collectively, we report a lncRNA-mediated regulatory layer safeguarding embryonic cell fate transitions.
  •  
4.
  • Juvvuna, Prasanna Kumar, et al. (författare)
  • NBAT1/CASC15-003/USP36 control MYCN expression and its downstream pathway genes in neuroblastoma.
  • 2021
  • Ingår i: Neuro-oncology advances. - : Oxford University Press (OUP). - 2632-2498. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • MYCN has been an attractive therapeutic target in neuroblastoma considering the widespread amplification of the MYCN locus in neuroblastoma, and its established role in neuroblastoma development and progression. Thus, understanding neuroblastoma-specific control of MYCN expression at the transcriptional and post-transcriptional level would lead to identification of novel MYCN-dependent oncogenic pathways and potential therapeutic strategies.By performing loss- and gain-of-function experiments of the neuroblastoma hotspot locus 6p22.3 derived lncRNAs CASC15-003 and NBAT1, together with coimmunoprecipitation and immunoblotting of MYCN, we have shown that both lncRNAs post-translationally control the expression of MYCN through regulating a deubiquitinase enzyme USP36. USP36 oncogenic properties were investigated using cancer cell lines and in vivo models. RNA-seq analysis of loss-of-function experiments of CASC15-003/NBAT1/MYCN/USP36 and JQ1-treated neuroblastoma cells uncovered MYCN-dependent oncogenic pathways.We show that NBAT1/CASC15-003 control the stability of MYCN protein through their common interacting protein partner USP36. USP36 harbors oncogenic properties and its higher expression in neuroblastoma patients correlates with poor prognosis, and its downregulation significantly reduces tumor growth in neuroblastoma cell lines and xenograft models. Unbiased integration of RNA-seq data from CASC15-003, NBAT1, USP36, and MYCN knockdowns and neuroblastoma cells treated with MYCN inhibitor JQ1, identified genes that are jointly regulated by the NBAT1/CASC15-003/USP36/MYCN pathway. Functional experiments on one of the target genes, COL18A1, revealed its role in the NBAT1/CASC15-003-dependent cell adhesion feature in neuroblastoma cells.Our data show post-translational regulation of MYCN by NBAT1/CASC15-003/USP36, which represents a new regulatory layer in the complex multilayered gene regulatory network that controls MYCN expression.
  •  
5.
  • Kanduri, Meena, 1974, et al. (författare)
  • A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma
  • 2013
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 8:12, s. 1280-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The chromatin modifier EZH2 is overexpressed and associated with inferior outcome in mantle cell lymphoma (MCL). Recently, we demonstrated preferential DNA methylation of HOX genes in MCL compared with chronic lymphocytic leukemia (CLL), despite these genes not being expressed in either entity. Since EZH2 has been shown to regulate HOX gene expression, to gain further insight into its possible role in differential silencing of HOX genes in MCL vs. CLL, we performed detailed epigenetic characterization using representative cell lines and primary samples. We observed significant overexpression of EZH2 in MCL vs. CLL. Chromatin immune precipitation (ChIP) assays revealed that EZH2 catalyzed repressive H3 lysine 27 trimethylation (H3K27me3), which was sufficient to silence HOX genes in CLL, whereas in MCL H3K27me3 is accompanied by DNA methylation for a more stable repression. More importantly, hypermethylation of the HOX genes in MCL resulted from EZH2 overexpression and subsequent recruitment of the DNA methylation machinery onto HOX gene promoters. The importance of EZH2 upregulation in this process was further underscored by siRNA transfection and EZH2 inhibitor experiments. Altogether, these observations implicate EZH2 in the long-term silencing of HOX genes in MCL, and allude to its potential as a therapeutic target with clinical impact.
  •  
6.
  • Kopparapu, Pradeep Kumar, et al. (författare)
  • Gene-body hypermethylation controlled cryptic promoter and miR26A1-dependent EZH2 regulation of TET1 gene activity in chronic lymphocytic leukemia
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:44, s. 77595-77608
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ten-eleven-translocation 1 (TET1) protein is a member of dioxygenase protein family that catalyzes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. TET1 is differentially expressed in many cancers, including leukemia. However, very little is known about mechanism behind TET1 deregulation. Previously, by characterizing global methylation patterns in CLL patients using MBD-seq, we found TET1 as one of the differentially methylated regions with gene-body hypermethylation. Herein, we characterize mechanisms that control TET1 gene activity at the transcriptional level. We show that treatment of CLL cell lines with 5-aza 2'-deoxycytidine (DAC) results in the activation of miR26A1, which causes decrease in both mRNA and protein levels of EZH2, which in turn results in the decreased occupancy of EZH2 over the TET1 promoter and consequently the loss of TET1 expression. In addition, DAC treatment also leads to the activation of antisense transcription overlapping the TET1 gene from a cryptic promoter, located in the hypermethylated intronic region. Increased expression of intronic transcripts correlates with decreased TET1 promoter activity through the loss of RNA Pol II occupancy. Thus, our data demonstrate that TET1 gene activation in CLL depends on miR26A1 regulated EZH2 binding at the TET1 promoter and silencing of novel cryptic promoter by gene-body hypermethylation.
  •  
7.
  • Kopparapu, Pradeep Kumar, et al. (författare)
  • MCPH1 maintains long-term epigenetic silencing of ANGPT2 in chronic lymphocytic leukemia.
  • 2015
  • Ingår i: The FEBS journal. - : Wiley. - 1742-4658 .- 1742-464X. ; 282:10, s. 1939-1952
  • Tidskriftsartikel (refereegranskat)abstract
    • The microcephalin gene (MCPH1) [also known as inhibitor of human telomerase reverse transcriptase (hTERT) expression] is a tumor suppressor gene that is functionally involved in the DNA damage response. Angiopoietin 2 (ANGPT2) is a crucial factor regulating tumor angiopoiesis. Deregulation of angiogenesis is one of the hallmarks of many cancers, including chronic lymphocytic leukemia (CLL). In CLL, ANGPT2 is a well-studied potential prognostic marker. As MCPH1 overlaps with the ANGPT2 transcription unit on the same chromosome but in the opposite orientation, we wanted to study the functional role of MCPH1 in regulation of ANGPT2 in CLL. The mRNA expression levels of MCPH1 and ANGPT2, including the MCPH1 target gene hTERT, showed significant differences between two prognostic groups, i.e. IGHV-mutated and IGHV-unmutated (P=0.007 for MCPH1, P=0.0002 for ANGPT2, and P=0.00001 for hTERT), in which the expression level of MCPH1 was inversely correlated with the expression levels of hTERT and ANGPT2. Downregulation of MCPH1 resulted in upregulation of ANGPT2, accompanied by loss of its promoter methylation. Using chromatin immunoprecipitation and coimmunoprecipitation assays, we found that MCPH1 binds to the ANGPT2 promoter and recruits DNA methyltransferases, thereby silencing ANGPT2. Thus, our data suggest a novel function for MCPH1 in regulating and maintaining ANGPT2 silencing in CLL through regulation of promoter DNA methylation.
  •  
8.
  • Kosalai, Subazini Thankaswamy, 1980, et al. (författare)
  • EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia
  • 2019
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 14:11, s. 1125-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • EZH2 is overexpressed in poor-prognostic chronic lymphocytic leukaemia (CLL) cases, acting as an oncogene; however, thus far, the EZH2 target genes in CLL have not been disclosed. In this study, using ChIP-sequencing, we identified EZH2 and H3K27me3 target genes in two prognostic subgroups of CLL with distinct prognosis and outcome, i.e., cases with unmutated (U-CLL, n = 6) or mutated IGHV genes (M-CLL, n = 6). While the majority of oncogenic pathways were equally enriched for EZH2 target genes in both prognostic subgroups, PI3K pathway genes were differentially bound by EZH2 in U-CLL versus M-CLL. The occupancy of EZH2 for selected PI3K pathway target genes was validated in additional CLL samples (n = 16) and CLL cell lines using siRNA-mediated EZH2 downregulation and ChIP assays. Intriguingly, we found that EZH2 directly binds to the IGF1R promoter along with MYC and upregulates IGF1R expression in U-CLL, leading to downstream PI3K activation. By investigating an independent CLL cohort (n = 96), a positive correlation was observed between EZH2 and IGF1R expression with higher levels in U-CLL compared to M-CLL. Accordingly, siRNA-mediated downregulation of either EZH2, MYC or IGF1R and treatment with EZH2 and MYC pharmacological inhibitors in the HG3 CLL cell line induced a significant reduction in PI3K pathway activation. In conclusion, we characterize for the first time EZH2 target genes in CLL revealing a hitherto unknown implication of EZH2 in modulating the PI3K pathway in a non-canonical, PRC2-independent way, with potential therapeutic implications considering that PI3K inhibitors are effective therapeutic agents for CLL.
  •  
9.
  • Mahale, Sagar, et al. (författare)
  • HnRNPK maintains single strand RNA through controlling double-strand RNA in mammalian cells.
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although antisense transcription is a widespread event in the mammalian genome, double-stranded RNA (dsRNA) formation between sense and antisense transcripts is very rare and mechanisms that control dsRNA remain unknown. By characterizing the FGF-2 regulated transcriptome in normal and cancer cells, we identified sense and antisense transcripts IER3 and IER3-AS1 that play a critical role in FGF-2 controlled oncogenic pathways. We show that IER3 and IER3-AS1 regulate each other's transcription through HnRNPK-mediated post-transcriptional regulation. HnRNPK controls the mRNA stability and colocalization of IER3 and IER3-AS1. HnRNPK interaction with IER3 and IER3-AS1 determines their oncogenic functions by maintaining them in a single-stranded form. hnRNPK depletion neutralizes their oncogenic functions through promoting dsRNA formation and cytoplasmic accumulation. Intriguingly, hnRNPK loss-of-function and gain-of-function experiments reveal its role in maintaining global single- and double-stranded RNA. Thus, our data unveil the critical role of HnRNPK in maintaining single-stranded RNAs and their physiological functions by blocking RNA-RNA interactions.
  •  
10.
  • Mondal, Tanmoy, 1981, et al. (författare)
  • Sense-antisense lncRNA pair encoded by locus 6p22.3 determines neuroblastoma susceptibility via the USP36-CHD7-SOX9 regulatory axis
  • 2018
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Trait-associated loci often map to genomic regions encoding long noncoding RNAs (lncRNAs), but the role of these lncRNAs in disease etiology is largely unexplored. We show that a pair of sense/antisense lncRNA (6p22lncRNAs) encoded by CASC15 and NBAT1 located at the neuroblastoma (NB) risk-associated 6p22.3 locus are tumor suppressors and show reduced expression in high-risk NBs. Loss of functional synergy between 6p22lncRNAs results in an undifferentiated state that is maintained by a gene-regulatory network, including SOX9 located on 17q, a region frequently gained in NB. 6p22lncRNAs regulate SOX9 expression by controlling CHD7 stability via modulating the cellular localization of USP36, encoded by another 17q gene. This regulatory nexus between 6p22.3 and 17q regions may lead to potential NB treatment strategies.
  •  
11.
  • Pandey, Gaurav Kumar, et al. (författare)
  • The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 26:5, s. 722-737
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is an embryonal tumor of the sympathetic nervous system and the most common extracranial tumor of childhood. By sequencing transcriptomes of low- and high-risk neuroblastomas, we detected differentially expressed annotated and nonannotated long noncoding RNAs (lncRNAs). We identified a lncRNA neuroblastoma associated transcript-1 (NBAT-1) as a biomarker significantly predicting clinical outcome of neuroblastoma. CpG methylation and a high-risk neuroblastoma associated SNP on chromosome 6p22 functionally contribute to NBAT-1 differential expression. Loss of NBAT-1 increases cellular proliferation and invasion. It controls these processes via epigenetic silencing of target genes. NBAT-1 loss affects neuronal differentiation through activation of the neuronal-specific transcription factor NRSF/REST. Thus, loss of NBAT-1 contributes to aggressive neuroblastoma by increasing proliferation and impairing differentiation of neuronal precursors.
  •  
12.
  • Subhash, Santhilal, 1987, et al. (författare)
  • Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL.
  • 2016
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Methyl-CpG-binding domain protein enriched genome-wide sequencing (MBD-Seq) is a robust and powerful method for analyzing methylated CpG-rich regions with complete genome-wide coverage. In chronic lymphocytic leukemia (CLL), the role of CpG methylated regions associated with transcribed long noncoding RNAs (lncRNA) and repetitive genomic elements are poorly understood. Based on MBD-Seq, we characterized the global methylation profile of high CpG-rich regions in different CLL prognostic subgroups based on IGHV mutational status. Results: Our study identified 5800 hypermethylated and 12,570 hypomethylated CLL-specific differentially methylated genes (cllDMGs) compared to normal controls. From cllDMGs, 40 % of hypermethylated and 60 % of hypomethylated genes were mapped to noncoding RNAs. In addition, we found that the major repetitive elements such as short interspersed elements (SINE) and long interspersed elements (LINE) have a high percentage of cllDMRs (differentially methylated regions) in IGHV subgroups compared to normal controls. Finally, two novel lncRNAs (hypermethylated CRNDE and hypomethylated AC012065.7) were validated in an independent CLL sample cohort (48 samples) compared with 6 normal sorted B cell samples using quantitative pyrosequencing analysis. The methylation levels showed an inverse correlation to gene expression levels analyzed by real-time quantitative PCR. Notably, survival analysis revealed that hypermethylation of CRNDE and hypomethylation of AC012065.7 correlated with an inferior outcome. Conclusions: Thus, our comprehensive methylation analysis by MBD-Seq provided novel hyper and hypomethylated long noncoding RNAs, repetitive elements, along with protein coding genes as potential epigenetic-based CLL-signature genes involved in disease pathogenesis and prognosis.
  •  
13.
  • Subhash, Santhilal, 1987, et al. (författare)
  • H3K4me2 and WDR5 enriched chromatin interacting long non-coding RNAs maintain transcriptionally competent chromatin at divergent transcriptional units
  • 2018
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 46:18, s. 9384-9400
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently lncRNAs have been implicated in the sub-compartmentalization of eukaryotic genome via genomic targeting of chromatin remodelers. To explore the function of lncRNAs in the maintenance of active chromatin, we characterized lncRNAs from the chromatin enriched with H3K4me2 and WDR5 using chromatin RNA immunoprecipitation (ChRIP). Significant portion of these enriched lncRNAs were arranged in antisense orientation with respect to their protein coding partners. Among these, 209 lncRNAs, commonly enriched in H3K4me2 and WDR5 chromatin fractions, were named as active chromatin associated lncRNAs (active lncCARs). Interestingly, 43% of these active lncCARs map to divergent transcription units. Divergent transcription (XH) units were overrepresented in the active lncCARs as compared to the inactive lncCARs. ChIP-seq analysis revealed that active XH transcription units are enriched with H3K4me2, H3K4me3 and WDR5. WDR5 depletion resulted in the loss of H3K4me3 but not H3K4me2 at the XH promoters. Active XH CARs interact with and recruit WDR5 to XH promoters, and their depletion leads to decrease in the expression of the corresponding protein coding genes and loss of H3K4me2, H3K4me3 and WDR5 at the active XH promoters. This study unravels a new facet of chromatin-based regulation at the divergent XH transcription units by this newly identified class of H3K4me2/WDR5 chromatin enriched lncRNAs.
  •  
14.
  • Subhash, Santhilal, 1987, et al. (författare)
  • Sperm Originated Chromatin Imprints and LincRNAs in Organismal Development and Cancer
  • 2020
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 23:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance of sperm-derived transcripts and chromatin imprints in organismal development is poorly investigated. Here using an integrative approach, we show that human sperm transcripts are equally important as oocyte. Sperm-specific and sperm-oocyte common transcripts carry distinct chromatin structures at their promoters correlating with corresponding transcript levels in sperm. Interestingly, sperm-specific H3K4me3 patterns at the lincRNA promoters are not maintained in the germ layers and somatic tissues. However, bivalent chromatin at the sperm-specific protein-coding gene promoters is maintained throughout the development. Sperm-specific transcripts reach their peak expression during zygotic genome activation, whereas sperm-oocyte common transcripts are present during early preimplantation development but decline at the onset of zygotic genome activation. Additionally, there is an inverse correlation between sperm-specific and sperm-oocyte lincRNAs throughout the development. Sperm-lincRNAs also show aberrant activation in tumors. Overall, our observations indicate that sperm transcripts carrying chromatin imprints may play an important role in human development and cancer.
  •  
15.
  • Wiel, Clotilde, 1987, et al. (författare)
  • BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis
  • 2019
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 178:2, s. 330-345
  • Tidskriftsartikel (refereegranskat)abstract
    • For tumors to progress efficiently, cancer cells must overcome barriers of oxidative stress. Although dietary antioxidant supplementation or activation of endogenous antioxidants by NRF2 reduces oxidative stress and promotes early lung tumor progression, little is known about its effect on lung cancer metastasis. Here, we show that long-term supplementation with the antioxidants N-acetylcysteine and vitamin E promotes KRAS-driven lung cancer metastasis. The antioxidants stimulate metastasis by reducing levels of free heme and stabilizing the transcription factor BACH1. BACH1 activates transcription of Hexokinase 2 and Gapdh and increases glucose uptake, glycolysis rates, and lactate secretion, thereby stimulating glycolysis-dependent metastasis of mouse and human lung cancer cells. Targeting BACH1 normalized glycolysis and prevented antioxidant-induced metastasis, while increasing endogenous BACH1 expression stimulated glycolysis and promoted metastasis, also in the absence of antioxidants. We conclude that BACH1 stimulates glycolysis-dependent lung cancer metastasis and that BACH1 is activated under conditions of reduced oxidative stress.
  •  
16.
  • Akhade, Vijay Suresh, et al. (författare)
  • Long Noncoding RNA: Genome organization and mechanism of action
  • 2017
  • Ingår i: Long Non Coding RNA Biology. M.R.S. Rao (red.). - Singapore : Springer. - 0065-2598. - 9789811052026 ; , s. 47-74
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture. © 2017, Springer Nature Singapore Pte Ltd.
  •  
17.
  • Ali, Mohamad Moustafa, et al. (författare)
  • PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite improvement in our understanding of long noncoding RNAs (lncRNAs) role in cancer, efforts to find clinically relevant cancer-associated lncRNAs are still lacking. Here, using nascent RNA capture sequencing, we identify 1145 temporally expressed S-phase-enriched lncRNAs. Among these, 570 lncRNAs show significant differential expression in at least one tumor type across TCGA data sets. Systematic clinical investigation of 14 Pan-Cancer data sets identified 633 independent prognostic markers. Silencing of the top differentially expressed and clinically relevant S-phase-enriched lncRNAs in several cancer models affects crucial cancer cell hallmarks. Mechanistic investigations on SCAT7 in multiple cancer types reveal that it interacts with hnRNPK/YBX1 complex and affects cancer cell hallmarks through the regulation of FGF/FGFR and its downstream PI3K/AKT and MAPK pathways. We also implement a LNA-antisense oligo-based strategy to treat cancer cell line and patient-derived tumor (PDX) xenografts. Thus, this study provides a comprehensive list of lncRNA-based oncogenic drivers with potential prognostic value.
  •  
18.
  • Athie, Alejandro, et al. (författare)
  • Analysis of copy number alterations reveals the lncRNA ALAL-1 as a regulator of lung cancer immune evasion
  • 2020
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 1540-8140 .- 0021-9525. ; 219:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is characterized by genomic instability leading to deletion or amplification of oncogenes or tumor suppressors. However, most of the altered regions are devoid of known cancer drivers. Here, we identify lncRNAs frequently lost or amplified in cancer. Among them, we found amplified lncRNA associated with lung cancer-1 (ALAL-1) as frequently amplified in lung adenocarcinomas. ALAL-1 is also overexpressed in additional tumor types, such as lung squamous carcinoma. The RNA product of ALAL-1 is able to promote the proliferation and tumorigenicity of lung cancer cells. ALAL-1 is a TNFα- and NF-κB-induced cytoplasmic lncRNA that specifically interacts with SART3, regulating the subcellular localization of the protein deubiquitinase USP4 and, in turn, its function in the cell. Interestingly, ALAL-1 expression inversely correlates with the immune infiltration of lung squamous tumors, while tumors with ALAL-1 amplification show lower infiltration of several types of immune cells. We have thus unveiled a pro-oncogenic lncRNA that mediates cancer immune evasion, pointing to a new target for immune potentiation.
  •  
19.
  • Bandaru, Sashidar, et al. (författare)
  • Filamin A increases aggressiveness of human neuroblastoma.
  • 2022
  • Ingår i: Neuro-oncology Advances. - : Oxford University Press (OUP). - 2632-2498. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The actin-binding protein filamin A (FLNA) regulates oncogenic signal transduction important for tumor growth, but the role of FLNA in the progression of neuroblastoma (NB) has not been explored.We analyzed FLNA mRNA expression in the R2 NB-database and FLNA protein expression in human NB tumors. We then silenced FLNA expression in human SKNBE2 and IMR32 NB cells by lentiviral vector encoding shRNA FLNA and assayed the cells for proliferation, migration, colony, spheroid formation, and apoptosis. SKNBE2 xenografts expressing or lacking FLNA in BALB/c nude mice were analyzed by both routine histopathology and immunohistochemistry.We observed shorter patient survival with higher expression of FLNA mRNA than patients with lower FLNA mRNA expression, and high-risk NB tumors expressed higher FLNA levels. Overexpression of FLNA increased proliferation of SH-SY5 NB cells. NB cell lines transfected with siRNA FLNA proliferated and migrated less, expressed lower levels of phosphorylated AKT and ERK1/2, formed smaller colonies and spheroids, as well as increased apoptosis. After inoculation of SKNBE2 cells infected with lentivirus expressing shRNA FLNA, size of NB tumors and number of proliferating cells were decreased. Furthermore, we identified STAT3 as an interacting partner of FLNA. Silencing FLNA mRNA reduced levels of NF-κB, STAT3 and MYCN, and increased levels of p53 and cleaved caspase 3.Inhibition of FLNA impaired NB cell signaling and function and reduced NB tumor size in vivo, suggesting that drugs targeting either FLNA or its interaction with STAT3 may be useful in the treatment of NB.
  •  
20.
  • Kanduri, Chandrasekhar, 1967 (författare)
  • Kcnq1ot1: A chromatin regulatory RNA
  • 2011
  • Ingår i: SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY. - 1084-9521. ; 22:4, s. 343-350
  • Forskningsöversikt (refereegranskat)
  •  
21.
  • Kanduri, Chandrasekhar, 1967 (författare)
  • Long noncoding RNAs: Lessons from Genomic imprinting.
  • 2016
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002. ; 1859:1, s. 102-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
  •  
22.
  • Kuo, Chao-Chung, et al. (författare)
  • Detection of RNA-DNA binding sites in long noncoding RNAs.
  • 2019
  • Ingår i: Nucleic acids research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 47:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.
  •  
23.
  • Ma, Haixia, et al. (författare)
  • The transcription factor Foxp1 regulates aerobic glycolysis in adipocytes and myocytes
  • 2023
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 299:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate pro-duction despite normal oxygen levels and functional mito-chondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is in-dependent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immu-noprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.
  •  
24.
  • Matthieu, Meryet-Figuiere, et al. (författare)
  • Temporal separation of replication and transcription during S-phase progression.
  • 2014
  • Ingår i: Cell Cycle. - : Informa UK Limited. - 1538-4101 .- 1551-4005. ; 13:20, s. 3241-3248
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptional events during S-phase are critical for cell cycle progression. Here, by using a nascent RNA capture assay coupled with high-throughput sequencing, we determined the temporal patterns of transcriptional events that occur during S-phase. We show that genes involved in critical S-phase-specific biological processes such as nucleosome assembly and DNA repair have temporal transcription patterns across S-phase that are not evident from total RNA levels. By comparing transcription timing with replication timing in S-phase, we show that early replicating genes show increased transcription late in S-phase whereas late replicating genes are predominantly transcribed early in S-phase. Global anti-correlation between replication and transcription timing was observed only based on nascent RNA but not total RNA. Our data provides a detailed view of ongoing transcriptional events during the S-phase of cell cycle, and supports that transcription and replication are temporally separated.
  •  
25.
  • Mattick, J. S., et al. (författare)
  • Long non-coding RNAs: definitions, functions, challenges and recommendations
  • 2023
  • Ingår i: Nature Reviews Molecular Cell Biology. - : Springer Science and Business Media LLC. - 1471-0072 .- 1471-0080. ; 24:6, s. 430-447
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
  •  
26.
  • Mishra, Kankadeb, 1981, et al. (författare)
  • Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far
  • 2019
  • Ingår i: Non-Coding Rna. - : MDPI AG. - 2311-553X. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
  •  
27.
  • Mitra, Sanhita, et al. (författare)
  • Subcellular distribution of p53 by the p53-responsive lncRNA NBAT1 determines chemotherapeutic response in neuroblastoma.
  • 2021
  • Ingår i: Cancer research. - 1538-7445. ; 81:6, s. 1457-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma has a low mutation rate for the p53 gene. Alternative ways of p53 inactivation have been proposed in neuroblastoma, such as abnormal cytoplasmic accumulation of wild-type p53. However, mechanisms leading to p53 inactivation via cytoplasmic accumulation are not well investigated. Here we show that the neuroblastoma risk-associated locus 6p22.3-derived tumor suppressor NBAT1 is a p53-responsive lncRNA that regulates p53 subcellular levels. Low expression of NBAT1 provided resistance to genotoxic drugs by promoting p53 accumulation in cytoplasm and loss from mitochondrial and nuclear compartments. Depletion of NBAT1 altered CRM1 function and contributed to the loss of p53-dependent nuclear gene expression during genotoxic drug treatment. CRM1 inhibition rescued p53-dependent nuclear functions and sensitized NBAT1-depleted cells to genotoxic drugs. Combined inhibition of CRM1 and MDM2 was even more effective in sensitizing aggressive neuroblastoma cells with p53 cytoplasmic accumulation. Thus, our mechanistic studies uncover an NBAT1-dependent CRM1/MDM2-based potential combination therapy for high-risk neuroblastoma patients.
  •  
28.
  • Mohammad, F., et al. (författare)
  • Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing
  • 2012
  • Ingår i: Development. - : The Company of Biologists. - 0950-1991 .- 1477-9129. ; 139:15, s. 2792-2803
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishment of silencing by noncoding RNAs (ncRNAs) via targeting of chromatin remodelers is relatively well investigated; however, their role in the maintenance of silencing is poorly understood. Here, we explored the functional role of the long ncRNA Kcnq1ot1 in the maintenance of transcriptional gene silencing in the one mega-base Kcnq1 imprinted domain in a transgenic mouse model. By conditionally deleting the Kcnq1ot1 ncRNA at different stages of mouse development, we suggest that Kcnq1ot1 ncRNA is required for the maintenance of the silencing of ubiquitously imprinted genes (UIGs) at all developmental stages. In addition, Kcnq1ot1 ncRNA is also involved in guiding and maintaining the CpG methylation at somatic differentially methylated regions flanking the UIGs, which is a hitherto unknown role for a long ncRNA. On the other hand, silencing of some of the placental-specific imprinted genes (PIGs) is maintained independently of Kcnq1ot1 ncRNA. Interestingly, the non-imprinted genes (NIGs) that escape RNA-mediated silencing are enriched with enhancer-specific modifications. Taken together, this study illustrates the gene-specific maintenance mechanisms operational at the Kcnq1 locus for tissue-specific transcriptional gene silencing and activation.
  •  
29.
  • Mondal, Tanmoy, 1981, et al. (författare)
  • Chromatin RNA Immunoprecipitation (ChRIP).
  • 2017
  • Ingår i: Methods in molecular biology. - New York, NY : Humana Press. - 1940-6029. - 9781493973798 ; , s. 65-76
  • Bokkapitel (refereegranskat)abstract
    • Researchers have recently had a growing interest in understanding the functional role of long noncoding RNAs (lncRNAs) in chromatin organization. Accumulated evidence suggests lncRNAs could act as interphase molecules between chromatin and chromatin remodelers to define the epigenetic code. However, it is not clear how lncRNAs target chromatin remodelers to specific chromosomal regions in order to establish a functionally distinct epigenetic state of chromatin. We developed and optimized chromatin RNA immunoprecipitation (ChRIP) technology to characterize the lncRNAs associated with active and inactive chromatin compartments. Use of ChRIP to identify chromatin-bound lncRNA will further improve our knowledge regarding the functional role of lncRNAs in establishing epigenetic modifications of chromatin.
  •  
30.
  • Mondal, Tanmoy, 1981, et al. (författare)
  • LncRNAs join hands together to regulate neuroblastoma progression.
  • 2019
  • Ingår i: Molecular & cellular oncology. - : Informa UK Limited. - 2372-3556. ; 6:1
  • Forskningsöversikt (refereegranskat)abstract
    • Trait associated single nucleotide polymorphisms often overlap with noncoding transcripts but their contribution to disease phenotype is poorly investigated. Our study on neuroblastoma risk associated 6p22.3 locus derived long noncoding RNAs (lncRNAs) demonstrates that functional co-operation between sense-antisense CASC15 and NBAT1 lncRNAs control neuroblastoma progression via regulating SOX9-CHD7-USP36 regulatory axis.
  •  
31.
  • Mondal, Tanmoy, 1981, et al. (författare)
  • Maintenance of epigenetic information: a noncoding RNA perspective
  • 2013
  • Ingår i: Chromosome Research. - : Springer Science and Business Media LLC. - 0967-3849 .- 1573-6849. ; 21:6-7, s. 615-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Along the lines of established players like chromatin modifiers and transcription factors, noncoding RNA (ncRNA) are now widely accepted as one of the key regulatory molecules in epigenetic regulation of transcription. With increasing evidence of ncRNAs in the establishment of gene silencing through their ability to interact with major chromatin modifiers, in the current review, we discuss their prospective role in the area of inheritance and maintenance of these established silenced states which can be reversible or irreversible in nature. In addition, we attempt to understand and speculate how these RNA dependent or independent maintenance mechanisms differ between each other in a developmental stage, tissue, and gene-specific manner in different biological contexts by utilizing known/unknown regulatory factors.
  •  
32.
  • Mondal, Tanmoy, 1981, et al. (författare)
  • MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Long noncoding RNAs (lncRNAs) regulate gene expression by association with chromatin, but how they target chromatin remains poorly understood. We have used chromatin RNA immunoprecipitation-coupled high-throughput sequencing to identify 276 lncRNAs enriched in repressive chromatin from breast cancer cells. Using one of the chromatin-interacting lncRNAs, MEG3, we explore the mechanisms by which lncRNAs target chromatin. Here we show that MEG3 and EZH2 share common target genes, including the TGF-β pathway genes. Genome-wide mapping of MEG3 binding sites reveals that MEG3 modulates the activity of TGF-β genes by binding to distal regulatory elements. MEG3 binding sites have GA-rich sequences, which guide MEG3 to the chromatin through RNA–DNA triplex formation. We have found that RNA–DNA triplex structures are widespread and are present over the MEG3 binding sites associated with the TGF-β pathway genes. Our findings suggest that RNA–DNA triplex formation could be a general characteristic of target gene recognition by the chromatin-interacting lncRNAs.
  •  
33.
  •  
34.
  • Pandey, Gaurav Kumar, et al. (författare)
  • Fighting Neuroblastomas with NBAT1.
  • 2015
  • Ingår i: Oncoscience. - 2331-4737. ; 2:2, s. 79-80
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
35.
  • Pandey, Gaurav Kumar, et al. (författare)
  • Long Non-Coding RNAs: Tools for Understanding and Targeting Cancer Pathways.
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:19
  • Forskningsöversikt (refereegranskat)abstract
    • The regulatory nature of long non-coding RNAs (lncRNAs) has been well established in various processes of cellular growth, development, and differentiation. Therefore, it is vital to examine their contribution to cancer development. There are ample examples of lncRNAs whose cellular levels are significantly associated with clinical outcomes. However, whether these non-coding molecules can work as either key drivers or barriers to cancer development remains unknown. The current review aims to discuss some well-characterised lncRNAs in the process of oncogenesis and extrapolate the extent of their decisive contribution to tumour development. We ask if these lncRNAs can independently initiate neoplastic lesions or they always need the modulation of well characterized oncogenes or tumour suppressors to exert their functional properties. Finally, we discuss the emerging genetic approaches and appropriate animal and humanised models that can significantly contribute to the functional dissection of lncRNAs in cancer development and progression.
  •  
36.
  • Pandey, Gaurav Kumar, et al. (författare)
  • Long noncoding RNAs and neuroblastoma.
  • 2015
  • Ingår i: OncoTarget. - : Impact Journals, LLC. - 1949-2553. ; 6:21, s. 18265-75
  • Forskningsöversikt (refereegranskat)abstract
    • Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients.
  •  
37.
  • Reinius, Björn, et al. (författare)
  • Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome.
  • 2012
  • Ingår i: BMC genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Background: Empirical evaluations of sexually dimorphic expression of genes on the mammalian X-chromosome are needed to understand the evolutionary forces and the gene-regulatory mechanisms controlling this chromosome. We performed a large-scale sex-bias expression analysis of genes on the X-chromosome in six different somatic tissues from mouse. Results: Our results show that the mouse X-chromosome is enriched with female-biased genes and depleted of male-biased genes. This suggests that feminisation as well as de-masculinisation of the X-chromosome has occurred in terms of gene expression in non-reproductive tissues. Several mechanisms may be responsible for the control of female-biased expression on chromosome X, and escape from X-inactivation is a main candidate. We confirmed escape in case of Tmem29 using RNA-FISH analysis. In addition, we identified novel female-biased non-coding transcripts located in the same female-biased cluster as the well-known coding X-inactivation escapee Kdm5c, likely transcribed from the transition-region between active and silenced domains. We also found that previously known escapees only partially explained the overrepresentation of female-biased X-genes, particularly for tissue-specific female-biased genes. Therefore, the gene set we have identified contains tissue-specific escapees and/or genes controlled by other sexually skewed regulatory mechanisms. Analysis of gene age showed that evolutionarily old X-genes (>100 myr, preceding the radiation of placental mammals) are more frequently female-biased than younger genes. Conclusion: Altogether, our results have implications for understanding both gene regulation and gene evolution of mammalian X-chromosomes, and suggest that the final result in terms of the X-gene composition (masculinisation versus feminisation) is a compromise between different evolutionary forces acting on reproductive and somatic tissues.
  •  
38.
  • Reinius, Björn, et al. (författare)
  • Elevated Expression of H19 and Igf2 in the Female Mouse Eye
  • 2013
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalogue of genes expressed at different levels in the two sexes is growing, and the mechanisms underlying sex differences in regulation of the mammalian transcriptomes are being explored. Here we report that the expression of the imprinted non-protein-coding maternally expressed gene H19 was female-biased specifically in the female mouse eye (1.9-fold, p = 3.0E−6) while not being sex-biased in other somatic tissues. The female-to-male expression fold-change of H19 fell in the range expected from an effect of biallelic versus monoallelic expression. Recently, the possibility of sex-specific parent-of-origin allelic expression has been debated. This led us to hypothesize that H19 might express biallelically in the female mouse eye, thus escape its silencing imprint on the paternal allele specifically in this tissue. We therefore performed a sex-specific imprinting assay of H19 in female and male eye derived from a cross between Mus musculus and Mus spretus. However, this analysis demonstrated that H19 was exclusively expressed from the maternal gene copy, disproving the escape hypothesis. Instead, this supports that the female-biased expression of H19 is the result of upregulation of the single maternal. Furthermore, if H19 would have been expressed from both gene copies in the female eye, an associated downregulation of Insulin-like growth factor 2 (Igf2) was expected, since H19 and Igf2 compete for a common enhancer element located in the H19/Igf2 imprinted domain. On the contrary we found that also Igf2 was significantly upregulated in its expression in the female eye (1.2-fold, p = 6.1E−3), in further agreement with the conclusion that H19 is monoallelically elevated in females. The female-biased expression of H19 and Igf2 specifically in the eye may contribute to our understanding of sex differences in normal as well as abnormal eye physiology and processes.
  •  
39.
  • Subhash, Santhilal, 1987, et al. (författare)
  • GeneSCF: a real-time based functional enrichment tool with support for multiple organisms
  • 2016
  • Ingår i: BMC bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High-throughput technologies such as ChIP-sequencing, RNA-sequencing, DNA sequencing and quantitative metabolomics generate a huge volume of data. Researchers often rely on functional enrichment tools to interpret the biological significance of the affected genes from these high-throughput studies. However, currently available functional enrichment tools need to be updated frequently to adapt to new entries from the functional database repositories. Hence there is a need for a simplified tool that can perform functional enrichment analysis by using updated information directly from the source databases such as KEGG, Reactome or Gene Ontology etc. Results: In this study, we focused on designing a command-line tool called GeneSCF (Gene Set Clustering based on Functional annotations), that can predict the functionally relevant biological information for a set of genes in a real-time updated manner. It is designed to handle information from more than 4000 organisms from freely available prominent functional databases like KEGG, Reactome and Gene Ontology. We successfully employed our tool on two of published datasets to predict the biologically relevant functional information. The core features of this tool were tested on Linux machines without the need for installation of more dependencies. Conclusions: GeneSCF is more reliable compared to other enrichment tools because of its ability to use reference functional databases in real-time to perform enrichment analysis. It is an easy-to-integrate tool with other pipelines available for downstream analysis of high-throughput data. More importantly, GeneSCF can run multiple gene lists simultaneously on different organisms thereby saving time for the users. Since the tool is designed to be ready-to-use, there is no need for any complex compilation and installation procedures.
  •  
40.
  • Subhash, Santhilal, 1987, et al. (författare)
  • S-phase cancer associated lncRNAs
  • 2018
  • Ingår i: Cell Cycle. - : Informa UK Limited. - 1538-4101 .- 1551-4005. ; 17:23, s. 2517-2519
  • Tidskriftsartikel (refereegranskat)abstract
    • Comment on: Ali MM, et al. Nature Communications 2018; 9:883.
  •  
41.
  • Subhash, Santhilal, 1987, et al. (författare)
  • Transcriptome-wide Profiling of Cerebral Cavernous Malformations Patients Reveal Important Long noncoding RNA molecular signatures : Long noncoding RNA molecular signatures in Cerebral Cavernous Malformations
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformations (CCMs) are low-flow vascular malformations in the brain associated with recurrent hemorrhage and seizures. The current treatment of CCMs relies solely on surgical intervention. Henceforth, alternative non-invasive therapies are urgently needed to help prevent subsequent hemorrhagic episodes. Long non-coding RNAs (lncRNAs) belong to the class of non-coding RNAs and are known to regulate gene transcription and involved in chromatin remodeling via various mechanism. Despite accumulating evidence demonstrating the role of lncRNAs in cerebrovascular disorders, their identification in CCMs pathology remains unknown. The objective of the current study was to identify lncRNAs associated with CCMs pathogenesis using patient cohorts having 10 CCM patients and 4 controls from brain. Executing next generation sequencing, we performed whole transcriptome sequencing (RNA-seq) analysis and identified 1,967 lncRNAs and 4,928 protein coding genes (PCGs) to be differentially expressed in CCMs patients. Among these, we selected top 6 differentially expressed lncRNAs each having significant correlative expression with more than 100 differentially expressed PCGs. The differential expression status of the top lncRNAs, SMIM25 and LBX2-AS1 in CCMs was further confirmed by qRT-PCR analysis. Additionally, gene set enrichment analysis of correlated PCGs revealed critical pathways related to vascular signaling and important biological processes relevant to CCMs pathophysiology. Here, by transcriptome-wide approach we demonstrate that lncRNAs are prevalent in CCMs disease and are likely to play critical roles in regulating important signaling pathways involved in the disease progression. We believe, that detailed future investigations on this set of identified lncRNAs can provide useful insights into the biology and, ultimately, contribute in preventing this debilitating disease.
  •  
42.
  • Sukonina, Valentina, et al. (författare)
  • FOXK1 and FOXK2 regulate aerobic glycolysis.
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 566, s. 279-283
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.
  •  
43.
  • Vizlin-Hodzic, Dzeneta, et al. (författare)
  • Early onset of inflammation during ontogeny of bipolar disorder: the NLRP2 inflammasome gene distinctly differentiates between patients and healthy controls in the transition between iPS cell and neural stem cell stages
  • 2017
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuro-inflammation and neuronal communication are considered as mis-regulated processes in the aetiology and pathology of bipolar disorder (BD). Which and when specific signal pathways become abnormal during the ontogeny of bipolar disorder patients is unknown. To address this question, we applied induced pluripotent stem cell (iPSC) technology followed by cortical neural differentiation on adipocyte-derived cells from BD type I patients (with psychotic episodes in psychiatric history) and healthy volunteers (controls). RNA sequencing in iPSC and cortical neural stem cell (NSC) lines were used to examine alterations between the transcriptomes from BD I and control samples during transition from the pluripotent stage towards the neural developmental stage. At the iPSC stage, the most highly significant differentially expressed gene (DEG) was the NLRP2 inflammasome (P = 2.66 × 10-10). Also among 42 DEGs at the NSC stage, NLRP2 showed the strongest statistical significance (P = 3.07 × 10-19). In addition, we have also identified several cytoskeleton-associated genes as DEGs from the NSC stage, such as TMP2, TAGLN, and ACTA2; the former two genes are recognised for the first time to be associated with BD. Our results also suggest that iPSC-derived BD-cortical NSCs carry several abnormalities in dopamine and GABA receptor canonical pathways, underlining that our in vitro BD model reflects pathology in the CNS. This would indicate that mis-regulated gene expression of inflammatory, neurotransmitter, and cytoskeletal signalling occurs during early foetal brain development of BD I patients.
  •  
44.
  • Zhou, A. X., et al. (författare)
  • The long noncoding RNA TUNAR modulates Wnt signaling and regulates human β-cell proliferation
  • 2021
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 320:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Many long noncoding RNAs (lncRNAs) are enriched in pancreatic islets and several lncRNAs are linked to type 2 diabetes (T2D). Although they have emerged as potential players in β-cell biology and T2D, little is known about their functions and mechanisms in human β-cells. We identified an islet-enriched lncRNA, TUNAR (TCL1 upstream neural differentiation-associated RNA), which was upregulated in β-cells of patients with T2D and promoted human β-cell proliferation via fine-tuning of the Wnt pathway. TUNAR was upregulated following Wnt agonism by a glycogen synthase kinase-3 (GSK3) inhibitor in human β-cells. Reciprocally, TUNAR repressed a Wnt antagonist Dickkopf-related protein 3 (DKK3) and stimulated Wnt pathway signaling. DKK3 was aberrantly expressed in β-cells of patients with T2D and displayed a synchronized regulatory pattern with TUNAR at the single cell level. Mechanistically, DKK3 expression was suppressed by the repressive histone modifier enhancer of zeste homolog 2 (EZH2). TUNAR interacted with EZH2 in β-cells and facilitated EZH2-mediated suppression of DKK3. These findings reveal a novel cell-specific epigenetic mechanism via islet-enriched lncRNA that fine-tunes the Wnt pathway and subsequently human β-cell proliferation.NEW & NOTEWORTHY The discovery that long noncoding RNA TUNAR regulates β-cell proliferation may be important in designing new treatments for diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44
Typ av publikation
tidskriftsartikel (38)
forskningsöversikt (4)
bokkapitel (2)
Typ av innehåll
refereegranskat (42)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Kanduri, Chandrasekh ... (44)
Akhade, Vijay Suresh (5)
Kogner, Per (4)
Andersson, Per-Ola, ... (3)
Akyürek, Levent, 196 ... (3)
Bandaru, Sashidar (3)
visa fler...
Reinius, Björn (3)
Martinsson, Tommy, 1 ... (2)
Abrahamsson, Jonas, ... (2)
Zhang, Wei (2)
Enroth, Stefan (2)
Larsson, Erik, 1975 (2)
Carén, Helena, 1979 (1)
Wu, M. (1)
Wan, Y. (1)
Abadpour, S. (1)
Smith, D. M. (1)
Scholz, H. (1)
Kirkeby, Agnete (1)
Morrow, Edward H. (1)
Sander, Birgitta (1)
Mansouri, L. (1)
Rosenquist, R. (1)
Johnson, R (1)
Fransson, Susanne, 1 ... (1)
Hanse, Eric, 1962 (1)
Kashif, M (1)
Pal, D. (1)
Johansson, Martin (1)
Stamatopoulos, K (1)
Rosenquist, Richard (1)
Stamatopoulos, Kosta ... (1)
Sutton, Lesley-Ann (1)
Carninci, P (1)
Ericson, E (1)
Papakonstantinou, N (1)
Wilhelmsson, Marcus, ... (1)
Ajona, Daniel (1)
Montuenga, Luis M. (1)
Ågren, Hans, 1945 (1)
Carpenter, S. (1)
Fitzgerald, K. A. (1)
Xu, X. F. (1)
Sayin, Volkan I., 19 ... (1)
Bergö, Martin O., 19 ... (1)
Funa, Keiko, 1949 (1)
Petri, Susanne (1)
Alaei-Mahabadi, Baba ... (1)
Alexandersson, I. (1)
Jazin, Elena (1)
visa färre...
Lärosäte
Göteborgs universitet (44)
Karolinska Institutet (11)
Uppsala universitet (5)
Chalmers tekniska högskola (4)
Lunds universitet (1)
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (19)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy