SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kantonen Oskari) "

Sökning: WFRF:(Kantonen Oskari)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kantonen, Oskari, et al. (författare)
  • Decreased thalamic activity is a correlate for disconnectedness during anesthesia with Propofol, Dexmedetomidine and Sevoflurane but not S-ketamine
  • 2023
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 43:26, s. 4884-4895
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 μg/ml; n = 40), dexmedetomidine (1.5 ng/ml; n = 40), sevoflurane (0.9% end-tidal; n = 40), S-ketamine (0.75 μg/ml; n = 20), or saline placebo (n = 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates of glucose (CMRglu) utilization. Contrasting scans where the subjects were classified as connected and responsive versus disconnected and unresponsive revealed that for all anesthetics, except S-ketamine, the level of thalamic activity differed between these states. A conjunction analysis across the propofol, dexmedetomidine and sevoflurane groups confirmed the thalamus as the primary structure where reduced metabolic activity was related to disconnectedness. Widespread cortical metabolic suppression was observed when these subjects, classified as either connected or disconnected, were compared with the placebo group, suggesting that these findings may represent necessary but alone insufficient mechanisms for the change in the state of consciousness.
  •  
2.
  • Kantonen, Oskari, et al. (författare)
  • Decreased Thalamic Activity Is a Correlate for Disconnectedness during Anesthesia with Propofol, Dexmedetomidine and Sevoflurane But Not S-Ketamine
  • 2023
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 43:26, s. 4884-4895
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 μg/ml; n = 40), dexmedetomidine (1.5 ng/ml; n = 40), sevoflurane (0.9% end-tidal; n = 40), S-ketamine (0.75 μg/ml; n = 20), or saline placebo (n = 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates of glucose (CMRglu) utilization. Contrasting scans where the subjects were classified as connected and responsive versus disconnected and unresponsive revealed that for all anesthetics, except S-ketamine, the level of thalamic activity differed between these states. A conjunction analysis across the propofol, dexmedetomidine and sevoflurane groups confirmed the thalamus as the primary structure where reduced metabolic activity was related to disconnectedness. Widespread cortical metabolic suppression was observed when these subjects, classified as either connected or disconnected, were compared with the placebo group, suggesting that these findings may represent necessary but alone insufficient mechanisms for the change in the state of consciousness.
  •  
3.
  • Scheinin, Annalotta, et al. (författare)
  • Foundations of human consciousness : Imaging the twilight zone
  • 2021
  • Ingår i: Journal of Neuroscience. - : The Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 41:8, s. 1769-1778
  • Tidskriftsartikel (refereegranskat)abstract
    • What happens in the brain when conscious awareness of the surrounding world fades? We manipulated consciousness in two experiments in a group of healthy males and measured brain activity with positron emission tomography. Measurements were made during wakefulness, escalating and constant levels of two anesthetic agents (Experiment 1, n=39) and during sleep-deprived wakefulness and Non-Rapid Eye Movement sleep (Experiment 2, n=37). In Experiment 1, the subjects were randomized to receive either propofol or dexmedetomidine until unresponsiveness. In both experiments, forced awakenings were applied to achieve rapid recovery from an unresponsive to a responsive state, followed by immediate and detailed interviews of subjective experiences during the preceding unresponsive condition. Unresponsiveness rarely denoted unconsciousness, as the majority of the subjects had internally generated experiences. Unresponsive anesthetic states and verified sleep stages, where a subsequent report of mental content included no signs of awareness of the surrounding world, indicated a disconnected state. Functional brain imaging comparing responsive and connected vs. unresponsive and disconnected states of consciousness during constant anesthetic exposure revealed that activity of the thalamus, cingulate cortices and angular gyri are fundamental for human consciousness. These brain structures were affected independent from the pharmacologic agent, drug concentration and direction of change in the state of consciousness. Analogous findings were obtained when consciousness was regulated by physiological sleep. State-specific findings were distinct and separable from the overall effects of the interventions, which included widespread depression of brain activity across cortical areas. These findings identify a central core brain network critical for human consciousness. SIGNIFICANCE STATEMENT Trying to understand the biological basis of human consciousness is currently one of the greatest challenges of neuroscience. While the loss and return of consciousness regulated by anesthetic drugs and physiological sleep are employed as model systems in experimental studies on consciousness, previous research results have been confounded by drug effects, by confusing behavioral "unresponsiveness" and internally generated consciousness, and by comparing brain activity levels across states that differ in several other respects than only consciousness. Here, we present carefully designed studies that overcome many previous confounders and for the first time reveal the neural mechanisms underlying human consciousness and its disconnection from behavioral responsiveness, both during anesthesia and during normal sleep, and in the same study subjects.
  •  
4.
  • Valli, Katja, 1973-, et al. (författare)
  • Subjective experiences during dexmedetomidine- or propofol-induced unresponsiveness and non-rapid eye movement sleep in healthy male subjects
  • 2023
  • Ingår i: British Journal of Anaesthesia. - : Elsevier. - 0007-0912 .- 1471-6771. ; 131:2, s. 348-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Anaesthetic-induced unresponsiveness and non-rapid eye movement (NREM) sleep share common neural pathways and neurophysiological features. We hypothesised that these states bear resemblance also at the experiential level. Methods: We compared, in a within-subject design, the prevalence and content of experiences in reports obtained after anaesthetic-induced unresponsiveness and NREM sleep. Healthy males (N=39) received dexmedetomidine (n=20) or propofol (n=19) in stepwise doses to induce unresponsiveness. Those rousable were interviewed and left unstimulated, and the procedure was repeated. Finally, the anaesthetic dose was increased 50%, and the participants were interviewed after recovery. The same participants (N=37) were also later interviewed after NREM sleep awakenings. Results: Most subjects were rousable, with no difference between anaesthetic agents (P=0.480). Lower drug plasma concentrations were associated with being rousable for both dexmedetomidine (P=0.007) and propofol (P=0.002) but not with recall of experiences in either drug group (dexmedetomidine: P=0.543; propofol: P=0.460). Of the 76 and 73 interviews performed after anaesthetic-induced unresponsiveness and NREM sleep, 69.7% and 64.4% included experiences, respectively. Recall did not differ between anaesthetic-induced unresponsiveness and NREM sleep (P=0.581), or between dexmedetomidine and propofol in any of the three awakening rounds (P>0.05). Disconnected dream-like experiences (62.3% vs 51.1%; P=0.418) and memory incorporation of the research setting (88.7% vs 78.7%; P=0.204) were equally often present in anaesthesia and sleep interviews, respectively, whereas awareness, signifying connected consciousness, was rarely reported in either state. Conclusions: Anaesthetic-induced unresponsiveness and NREM sleep are characterised by disconnected conscious experiences with corresponding recall frequencies and content. Clinical trial registration: Clinical trial registration. This study was part of a larger study registered at ClinicalTrials.gov (NCT01889004). 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy