SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kanwal Sehrish) "

Search: WFRF:(Kanwal Sehrish)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanwal, Sehrish, et al. (author)
  • Poly-thiourea formaldehyde based anticorrosion marine coatings on type 304 stainless steel
  • 2020
  • In: Journal of Materials Research and Technology. - : Elsevier. - 2238-7854. ; 9:2, s. 2146-2153
  • Journal article (peer-reviewed)abstract
    • In the present study, hexamethylene diisocyanate (HMDI) encapsulated poly-thiourea formaldehyde (PTF) (10 wt%) coating was developed in an epoxy-polyamine matrix and their anticorrosion studies on Type SS304 stainless steel substrate have been conducted using electrochemistry techniques. The compact and hydrophobic shell wall of PTF proved to be a potent shell wall material for HMDI encapsulation. The effect of temperature and pH values was found to be decisive factor in the synthesis of microcapsules. The PTF microcapsules were synthesized in acidic condition with a pH value of 3. Over 90% of the core fraction is retained in water after 21 days immersion. However, core content decreased with increasing temperature. The capsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy(SEM), thermogravimetric analysis (TGA) and Electrochemical Impedance spectroscopy (EIS). Scanning electron microscopic analysis depicts the uniform morphology of coating with a particle size in the range of 1.08 μm–22.06 μm. The vibrational band at 2271 cm−1 attributed to NCO signal further endorses the successful encapsulation of HMDI into the PTF capsules. Electrochemical testing on steel specifies the appreciable anticorrosion performance of the synthesized poly thiourea formaldehyde (PTF) coating against artificial sea water.
  •  
2.
  • Nazir, Uzma, et al. (author)
  • Biferrocenyl Schiff bases as efficient corrosion inhibitors for an aluminium alloy in HCl solution : a combined experimental and theoretical study
  • 2020
  • In: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 10:13, s. 7585-7599
  • Journal article (peer-reviewed)abstract
    • The corrosion inhibitive capabilities of some ferrocene-based Schiff bases on aluminium alloy AA2219-T6 in acidic medium were investigated using Tafel polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement, FT-IR spectroscopy and scanning electron microscopic (SEM) techniques. The influence of molecular configuration on the corrosion inhibition behavior has been explored by quantum chemical calculation. Ferrocenyl Schiff bases 4,4′-((((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcua), 4,4′-((((ethane-1,2-diylbis(oxy))bis(2-methoxy-1,4-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcub) and 4,4′-((((ethane-1,2-diylbis(oxy))bis(2-ethoxy-1,4-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcuc) have been synthesized and characterized by FT-IR, 1H and 13C NMR spectroscopic studies. These compounds showed a substantial corrosion inhibition against aluminium alloy in 0.1 M of HCl at 298 K. Fcub and Fcuc showed better anticorrosion efficiency as compared with Fcua due to the electron donating methoxy and ethoxy group substitutions, respectively. Polarization curves also indicated that the studied biferrocenyl Schiff bases were mixed type anticorrosive materials. The inhibition of the aluminium alloy surface by biferrocenyl Schiff bases was evidenced through scanning electron microscopy (SEM) studies. Semi-empirical quantum mechanical studies revealed a correlation between corrosion inhibition efficiency and structural functionalities.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view