SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaplan Jed O.) "

Sökning: WFRF:(Kaplan Jed O.)

  • Resultat 1-29 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Walker, Donald A., et al. (författare)
  • Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal Peninsula, Russia
  • 2011
  • Ingår i: Eurasian Arctic Land Cover and Land Use in a Changing Climate. - New York : Springer Netherlands. - 9789048191178 - 9789048191185 ; , s. 207-236
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The Yamal Peninsula in northwest Siberia is undergoing some of the most rapid land-cover and land-use changes in the Arctic due to a combination of gas development, reindeer herding, and climate change. Unusual geological conditions (nutrient-poor sands, massive ground ice and extensive landslides) exacerbate the impacts. These changes will likely increase markedly as transportation corridors are built to transport the gas to market. Understanding the nature, extent, causes and consequences (i.e., the cumulative effects) of the past and ongoing rapid changes on the Yamal is important for effective, long-term decision-making and planning. The cumulative effects to vegetation are the focus of this chapter because the plants are a critical component of the Yamal landscape that support the indigenous Nenets people and their reindeer and also protect the underlying ice-rich permafrost from melting. We are using a combination of ground-based studies (a transect of live locations across the Yamal), remote-sensing studies, and analyses of Nenets land-use activities to develop vegetation-change models that can be used to help anticipate future states of the tundra and how those changes might affect traditional reindeer herding practices and the thermal state of the permafrost. This chapter provides an overview of the approach, some early results, and recommendations for expanding the concept of cumulative-effects analysis to include examining the simultaneous and interactive effects of multiple drivers of change.
  •  
2.
  • Boyle, John F., et al. (författare)
  • Modelling prehistoric land-use and carbon budgets: a critical review
  • 2011
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 21:5, s. 715-722
  • Tidskriftsartikel (refereegranskat)abstract
    • An evaluation of modelled estimates for C release following early land clearance at the global level based on new model assumptions suggests that earlier studies may have underestimated its magnitude, chiefly because of underestimation of the mid-Holocene global population. Alternative information sources for population and land utilisation support both a greater total CO(2) release and a greater Neolithic contribution. Indeed, we show that the quantity of terrestrial C release due to early farming, even using the most conservative assumptions, greatly exceeds the net terrestrial C release estimated by inverse modelling of ice core data by Elsig et al. (Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M et al. ( 2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461: 507-510), though uncertainty about past global population estimates precludes calculation of a precise value.
  •  
3.
  • Büntgen, Ulf, et al. (författare)
  • Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD
  • 2016
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 9:3, s. 231-236
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD, which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.
  •  
4.
  • Büntgen, Ulf, et al. (författare)
  • Reply to 'Limited Late Antique cooling'
  • 2017
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 10:4, s. 243-243
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Fluet-Chouinard, Etienne, et al. (författare)
  • Extensive global wetland loss over the past three centuries
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 614:7947, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.
  •  
6.
  • Gaillard, Marie-José, et al. (författare)
  • Has anthropogenic land-cover change been a significant climate forcing in the past? : An assessment for the Baltic Sea catchment area based on a literature review
  • 2015
  • Ingår i: Geophysical Research Abstracts.
  • Konferensbidrag (refereegranskat)abstract
    • We reviewed the recent published scientific literature on land cover-climate interactions at the global and regional spatial scales with the aim to assess whether it is convincingly demonstrated that anthropogenic land-cover change (ALCC) has been (over the last centuries and millennia) a significant climate forcing at the global scale, and more specifically at the scale of the Baltic Sea catchment area. The conclusions from this review are as follows: i) anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response in the past is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects, and to the biogeochemical vs biogeophysical effects; ii) there is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback; iii) several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes; iv) palaeoecological studies indicate a major transformation of the landscape by anthropogenic activities in the southern zone of the study region occurring between 6000 and 3000/2500 calendar years before present (cal. BP) (1) ; v) the only modelling study so far of the biogeophysical effects of past ALCCs on regional climate in Europe suggests that a deforestation of the magnitude of that reconstructed for the past (between 6000 and 200 cal BP) can produce changes in winter and summer temperatures of +/- 1, the sign of the change depending on the season and the region (2). Thus, if ALCC and their biogeophysical effects did matter in the past, they should matter today and in the future. A still prevailing idea is that planting trees will mitigate climate warming through biogeochemical effects. Therefore, there is still an urgent need to better understand the biogeophysical effects on regional and continental climate of afforestation in the hemiboreal and boreal regions, and their significance in relation to the biogeochemical effects.
  •  
7.
  • Gaillard, Marie-José, 1953-, et al. (författare)
  • Land cover-climate interactions in the past for the understanding of current and future climate change : the LANDCLIM project
  • 2014
  • Ingår i: Proceedings of the Global Land Project 2nd Open Science Meeting, Berlin,<em> </em>March 19<sup>th</sup> – 21<sup>st</sup>, 2014. - Amsterdam/Berlin/Sao Paulo : Global Land Project. ; , s. 229-230
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The LANDCLIM (LAND cover – CLIMate interactions in NW Europe during the Holocene) project has the overall aim to quantify human-induced changes in regional vegetation/land-cover in northwestern and western Europe North of the Alps during the Holocene (the last 11 500 years) with the purpose to evaluate and further refine the dynamic vegetation model LPJGUESS and the regional climate model RCA3, and to assess the possible effects on the climate development of two historical processes, i.e. climate-driven changes in vegetation and human-induced changes in land cover, via the influence of forested versus non-forested land cover on shortwave albedo, energy and water fluxes. Accounting for land surface changes may be particularly important for regional climate modeling, as the biophysical feedbacks operate at this scale. The aims of the LANDCLIM project are achieved by applying a model-data comparison scheme. The REVEALS model is used to estimate land cover from pollen data for 10 plant functional types (PFTs) and 5 time windows of the Holocene - modern time, 200 BP, 500 BP, 3000 BP and 6000 BP. The REVEALS estimates are then compared to the LPJGUESS simulations of potential vegetation and with the ALCC scenarios of Kaplan et al. (KK10) and Klein-Goldewijk et al. (HYDE). The alternative descriptions of past land-cover are then used in the regional climate model RCA3 to study the effect of anthropogenic land-cover on climate. The model-simulated climate is finally compared to palaeoclimate proxies other than pollen. The REVEALS estimates demonstrate that the study region was characterized by larger areas of human-induced openland than pollen percentages suggest, and that these areas were already very large by 3000 BP. The KK10 scenarios were found to be closer to the REVEALS estimates than the HYDE scenarios. LPJGUESS simulates potential climate-induced vegetation. The results from the RCA3 runs at 200 BP and 6000 BP using the LPJGUESS and KK10 land-cover descriptions indicate that past human-induced deforestation did produce a decrease in summer temperatures of >0 - 1.5°C due to biogeophysical processes, and that the degree of decrease differed between regions; the effect of human-induced deforestation on winter temperatures was shown to be more complex. The positive property of forests as CO2 sinks is well known. But afforestation (i.e. planting forest) may also have the opposite effect of warming the climate through biogeophysical processes. Careful studies on land cover-climate interactions are essential to understand the net result of all possible processes related to anthropogenic land-cover change so that relevant landscape management can be implemented for mitigation of climate warming.
  •  
8.
  •  
9.
  • Hamilton, Douglas S., et al. (författare)
  • Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene
  • 2020
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 34:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron can be a growth‐limiting nutrient for phytoplankton, modifying rates of net primary production, nitrogen fixation, and carbon export ‐ highlighting the importance of new iron inputs from the atmosphere. The bioavailable iron fraction depends on the emission source and the dissolution during transport. The impacts of anthropogenic combustion and land use change on emissions from industrial, domestic, shipping, desert, and wildfire sources suggest that Northern Hemisphere soluble iron deposition has likely been enhanced between 2% and 68% over the Industrial Era. If policy and climate follow the intermediate Representative Concentration Pathway 4.5 trajectory, then results suggest that Southern Ocean (>30°S) soluble iron deposition would be enhanced between 63% and 95% by 2100. Marine net primary productivity and carbon export within the open ocean are most sensitive to changes in soluble iron deposition in the Southern Hemisphere; this is predominantly driven by fire rather than dust iron sources. Changes in iron deposition cause large perturbations to the marine nitrogen cycle, up to 70% increase in denitrification and 15% increase in nitrogen fixation, but only modestly impacts the carbon cycle and atmospheric CO2 concentrations (1–3 ppm). Regionally, primary productivity increases due to increased iron deposition are often compensated by offsetting decreases downstream corresponding to equivalent changes in the rate of phytoplankton macronutrient uptake, particularly in the equatorial Pacific. These effects are weaker in the Southern Ocean, suggesting that changes in iron deposition in this region dominates the global carbon cycle and climate response.
  •  
10.
  • Hantson, Stijn, et al. (författare)
  • The status and challenge of global fire modelling
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3359-3375
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.
  •  
11.
  • Harrison, Sandy P., et al. (författare)
  • Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus Gesellschaft MBH. - 1991-959X .- 1991-9603. ; 13:2, s. 805-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic changes in land use and land cover (LULC) during the pre-industrial Holocene could have affected regional and global climate. Existing scenarios of LULC changes during the Holocene are based on relatively simple assumptions and highly uncertain estimates of population changes through time. Archaeological and palaeoenvironmental reconstructions have the potential to refine these assumptions and estimates. The Past Global Changes (PAGES) LandCover6k initiative is working towards improved reconstructions of LULC globally. In this paper, we document the types of archaeological data that are being collated and how they will be used to improve LULC reconstructions. Given the large methodological uncertainties involved, both in reconstructing LULC from the archaeological data and in implementing these reconstructions into global scenarios of LULC, we propose a protocol to evaluate the revised scenarios using independent pollen-based reconstructions of land cover and climate. Further evaluation of the revised scenarios involves carbon cycle model simulations to determine whether the LULC reconstructions are consistent with constraints provided by ice core records of CO2 evolution and modern-day LULC. Finally, the protocol outlines how the improved LULC reconstructions will be used in palaeoclimate simulations in the Palaeoclimate Modelling Intercomparison Project to quantify the magnitude of anthropogenic impacts on climate through time and ultimately to improve the realism of Holocene climate simulations.
  •  
12.
  • Hughes, Ryan E., et al. (författare)
  • Quantifying Land Use in Past Societies from Cultural Practice and Archaeological Data
  • 2018
  • Ingår i: Land. - : MDPI AG. - 2073-445X. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative reconstructions of past land use facilitate comparisons between livelihoods in space and time. However, comparison between different types of land use strategies is challenging as land use has a multitude of expressions and intensities. The quantitative method presented here facilitates the exploration and synthetization of uneven archaeological and textual evidence from past societies. The approach quantifies the area required for habitation, agriculture, arboriculture, pasturage, and fuel supply, based on a combination of archaeological, historical, ethnographic and modern evidence from the relevant geographical region. It is designed to stimulate discussion and can be used to test a wide range of hypotheses regarding local and regional economies, ancient trade and redistribution, and the resilience and/or vulnerability of past societies to environmental change. The method also helps identify where our gaps in knowledge are in understanding past human–environment interaction, the ecological footprint of past cultures and their influence on the landscape in a transparent and quantitative manner. The present article focuses especially on the impact of dietary estimates and crop yield estimates, two main elements in calculating land use in past societies due to their uncertainty as well as their significant impact on calculations. By employing archaeological data, including botanical, zoological and isotopic evidence, alongside available textual sources, this method seeks to improve land use and land cover change models by increasing their representativeness and accuracy.
  •  
13.
  • Jungclaus, Johann H., et al. (författare)
  • The PMIP4 contribution to CMIP6 - Part 3 : The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4005-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
  •  
14.
  • Kaplan, Jed O., et al. (författare)
  • Constraining the Deforestation History of Europe : Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
  • 2017
  • Ingår i: Land. - : MDPI. - 2073-445X. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic land cover change (ALCC) is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1) in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS). Considering that ALCC in Europe primarily resulted in deforestation, we comparemodeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.
  •  
15.
  • Kaplan, Jed O (författare)
  • Geophysical Applications of Vegetation Modeling
  • 2001
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes the development and selected applications of a global vegetation model, BIOME4. The model is applied to problems in high-latitude vegetation distribution and climate, trace gas production, and isotope biogeochemistry. It demonstrates how a modeling approach, based on principles of plant physiology and ecology, can be applied to interdisciplinary problems that cannot be adequately addressed by direct observations or experiments. The work is relevant to understanding the potential effects of climate change on the terrestrial biosphere and the feedbacks between the biosphere and climate. BIOME4 simulates the distribution of 15 high-latitude biomes, including five tundra vegetation types, for the present day using observed climate, and the LGM, mid-Holocene, and a "greenhouse" scenario for 2100 using the output of GCMs. In the LGM simulations, the high-latitudes show a marked increase in the area of graminoid and forb tundra, which is also the predominant feature in the paleodata. This vegetation has no widespread modern analog; it was favored by the cold, dry climate, and supported large mammoth populations. Mid-Holocene simulations indicate a modest, asymmetrical northward advance of the Arctic treeline compared to present, with greatest extension in central Siberia (up to 300 km), and little to no change in the Western Hemisphere. This result is in good agreement with pollen and megafossil data from the same period. Differential warming of the continents in response to increased high-latitude solar radiation is hypothesized to account for the asymmetry. Vegetation changes in the 2100 projection, which assumes a continued exponential increase in atmospheric GHG concentrations, are more radical than those simulated for the mid-Holocene. The year-round forcing due to GHGs increases both summertime and annual temperatures in the high latitudes by up to double the mid-Holocene anomaly. However the potential treeline advances and biome shifts in our simulation are unlikely to be realized within 100 years, because of the time required for migration and establishment of new vegetation types. Potential natural wetland area for the present day was simulated by BIOME4 as 11.0 x 106 km2. This value is higher than other estimates but includes small (< 50 km2) and seasonal wetlands which have not been included in previous surveys. The wetland CH4 source was simulated as 140 Tg yr-1. At the LGM, simulated wetland area was increased by 15% but CH4 emissions were 24% less than the present-day. The simulated reduction in the CH4 source is due to substrate limitation induced by low atmospheric CO2 concentrations at the LGM. The 100% increase in atmospheric CH4 concentrations measured in ice cores between the LGM and the preindustrial Holocene may not be due to changes in CH4 source strength alone, as other trace gases influence the atmospheric CH4 sink. The stable carbon isotope composition of the terrestrial biosphere was simulated by BIOME4 and compared to measurements at the leaf, ecosystem and troposphere scales. Model simulations are correlated within one standard deviation to measured means at the PFT and biome scales, and at six Northern Hemisphere CO2 monitoring stations. Global carbon isotope discrimination in the terrestrial biosphere averaged 18.6‰ for potential natural vegetation and 18.1‰ when an agricultural land-use mask was applied. These simulated values are slightly higher than previous estimates, but consistent with measurements. This information is important for the interpretation of contemporary atmospheric observations in terms of carbon sources and sinks on land and in the ocean.
  •  
16.
  • Kaplan, Jed O, et al. (författare)
  • The stable carbon isotope composition of the terrestrial biosphere: Modeling at scales from the leaf to the globe
  • 2002
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Global data sets of the stable carbon isotope composition of plant leaves, of CO2 in canopy air, and of CO2 in the background atmosphere were compiled and compared to results of a global vegetation model (BIOME4) that simulated, at these three scales, the magnitude, direction, and timing of fluxes of CO2 and C-13 between the biosphere and the atmosphere. Carbon isotope data on leaves were classified into 12 Plant Functional Types (PFTs), and measurements from canopy flasks were assigned to 16 biomes, for direct comparison to model results. BIOME4 simulated the observed leaf delta(13)C values to within 1 standard deviation of the measured mean for most PFTs. Modeled delta(13)C for C-3 grasses, tundra shrubs, and herbaceous plants of cold climates deviated only slightly more from measurements, perhaps as a result of the wide geographic range and a limited set of measurements of these PFTs. Modeled ecosystem isotopic discrimination against C-13 (Delta(e)) averaged 18.6 globally when simulating potential natural vegetation and 18.1 when an agricultural crop mask was superimposed. The difference was mainly due to the influence of C-4 agriculture in areas that are naturally dominated by C-3 vegetation. Model results show a gradient in Delta(e) among C-3-dominated biomes as a result of stomatal responses to aridity; this model result is supported by canopy air measurements. At the troposphere scale, BIOME4 was coupled to a matrix representation of an atmospheric tracer transport model to simulate seasonally varying concentrations of CO2 and C-13 at remote Northern Hemisphere measuring stations. Ocean CO2 and C-13 flux fields were included, using the HAMOCC3 ocean biogeochemistry model [Six and Maier-Reimer, 1996]. Model results and observations show similar seasonal cycles, and the model reproduces the inferred latitudinal trend toward smaller isotopic discrimination by the biosphere at lower latitudes. These results indicate that biologically mediated variations in C-13 discrimination by terrestrial ecosystems may be significant for atmospheric inverse modeling of carbon sources and sinks, and that such variations can be simulated using a process-based model.
  •  
17.
  • Marchant, Rob, et al. (författare)
  • Drivers and trajectories of land cover change in East Africa : Human and environmental interactions from 6000 years ago to present
  • 2018
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 178, s. 322-378
  • Tidskriftsartikel (refereegranskat)abstract
    • East African landscapes today are the result of the cumulative effects of climate and land-use change over millennial timescales. In this review, we compile archaeological and palaeoenvironmental data from East Africa to document land-cover change, and environmental, subsistence and land-use transitions, over the past 6000 years. Throughout East Africa there have been a series of relatively rapid and high-magnitude environmental shifts characterised by changing hydrological budgets during the mid- to late Holocene. For example, pronounced environmental shifts that manifested as a marked change in the rainfall amount or seasonality and subsequent hydrological budget throughout East Africa occurred around 4000, 800 and 300 radiocarbon years before present (yr BP). The past 6000 years have also seen numerous shifts in human interactions with East African ecologies. From the mid-Holocene, land use has both diversified and increased exponentially, this has been associated with the arrival of new subsistence systems, crops, migrants and technologies, all giving rise to a sequence of significant phases of land-cover change. The first large-scale human influences began to occur around 4000 yr BP, associated with the introduction of domesticated livestock and the expansion of pastoral communities. The first widespread and intensive forest clearances were associated with the arrival of iron-using early farming communities around 2500 yr BP, particularly in productive and easily-cleared mid-altitudinal areas. Extensive and pervasive land-cover change has been associated with population growth, immigration and movement of people. The expansion of trading routes between the interior and the coast, starting around 1300 years ago and intensifying in the eighteenth and nineteenth centuries CE, was one such process. These caravan routes possibly acted as conduits for spreading New World crops such as maize (Zea mays), tobacco (Nicotiana spp.) and tomatoes (Solanum lycopersicum), although the processes and timings of their introductions remains poorly documented. The introduction of southeast Asian domesticates, especially banana (Musa spp.), rice (Oryza spp.), taro (Colocasia esculenta), and chicken (Gallus gallus), via transoceanic biological transfers around and across the Indian Ocean, from at least around 1300 yr BP, and potentially significantly earlier, also had profound social and ecological consequences across parts of the region. Through an interdisciplinary synthesis of information and metadatasets, we explore the different drivers and directions of changes in land-cover, and the associated environmental histories and interactions with various cultures, technologies, and subsistence strategies through time and across space in East Africa. This review suggests topics for targeted future research that focus on areas and/or time periods where our understanding of the interactions between people, the environment and land-cover change are most contentious and/or poorly resolved. The review also offers a perspective on how knowledge of regional land-use change can be used to inform and provide perspectives on contemporary issues such as climate and ecosystem change models, conservation strategies, and the achievement of nature-based solutions for development purposes.
  •  
18.
  • Marquer, Laurent, et al. (författare)
  • Quantifying the effects of land use and climate on Holocene vegetation in Europe
  • 2017
  • Ingår i: Quaternary Science Reviews. - : Pergamon Press. - 0277-3791 .- 1873-457X. ; 171, s. 20-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
19.
  •  
20.
  • Molinari, Chiara, et al. (författare)
  • Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis
  • 2013
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 22:12, s. 1248-1260
  • Tidskriftsartikel (refereegranskat)abstract
    • AimTo reconstruct spatial and temporal patterns of European fire activity during the Holocene and to explore their potential drivers, by relating biomass burning to simulated biotic and abiotic parameters. LocationEurope. MethodsHolocene fire activity was investigated based on 156 sedimentary charcoal records from lakes and peat bogs across Europe. Charcoal data covering the last 9000 years were statistically compared with palaeoclimate data derived from the Max Planck Institute for Meteorology/University of Wisconsin-Madison Earth System Model, with vegetation and fire indices simulated with the dynamic vegetation model lpj-guess and with two independent scenarios of past anthropogenic land-cover change. ResultsThe combined sedimentary charcoal records suggest that there was little fire activity during the early and the middle Holocene compared with recent millennia. A progressive increase in fire frequency began around 3500cal. yr bp and continues into the late Holocene. Biomass burning rose sharply from 250cal. yr bp onwards, reaching a maximum during the early Industrial Era and then declining abruptly. When considering the whole Holocene, the long-term control of fire is best explained by anthropogenic land-cover change, litter availability and temperature-related parameters. Main conclusionsWhile the general patterns found across Europe suggest the primary role of vegetation, precipitation and temperature-related parameters in explaining fire dynamics during the early Holocene, the increase in fire activity observed in the mid-late Holocene is mainly related to anthropogenic land-cover changes, followed by vegetation and temperature-related parameters. The 20th-century decline in biomass burning seems to be due to increased landscape fragmentation and active fire suppression policies. Our hypothesis that human activities played a primary role in Holocene biomass burning across Europe could be tested by improved palaeoclimate reconstructions and more refined representations of anthropogenic fires in climate and vegetation models.
  •  
21.
  • Molinari, Chiara, et al. (författare)
  • The climate, the fuel and the land use: long-term regional variability of biomass burning in boreal forests
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 24:10, s. 4929-4945
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (a) pollen‐based mean July/summer temperature and mean annual precipitation reconstructions, (b) an independent model‐based scenario of past land use (LU), and (c) pollen‐based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (a) a west‐east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (b) a north‐south European boreal sector characterized by gradual variation in both climate and vegetation composition. The processes driving BB in boreal forests varied from one region to another during the Holocene. However, general trends in boreal biomass burning were primarily controlled by changes in climate (mean annual precipitation in Alaska, northern Quebec, and northern Fennoscandia, and mean July/summer temperature in central Canada and central Fennoscandia) and, secondarily, by fuel composition (BB positively correlated with the presence of boreal needleleaf evergreentrees in Alaska and in central and southern Fennoscandia). Land use playedonly a marginal role. A modification towards less flammable tree species (by promoting deciduous stands over fire‐prone conifers) could contribute to reduce circumboreal wildfire risk in future warmer periods.
  •  
22.
  • Morrison, Kathleen D., et al. (författare)
  • Mapping past human land use using archaeological data : A new classification for global land use synthesis and data harmonization
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve representation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evidence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both implemented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and methods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, linking archaeologists with climate modelers, biodiversity conservation workers and initiatives.
  •  
23.
  • Pirzamanbein, Behnaz, et al. (författare)
  • Creating spatially continuous maps of past land cover from point estimates : A new statistical approach applied to pollen data
  • 2014
  • Ingår i: Ecological Complexity. - : Elsevier BV. - 1476-945X .- 1476-9840. ; 20, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable estimates of past land cover are critical for assessing potential effects of anthropogenic land-cover changes on past earth surface-climate feedbacks and landscape complexity. Fossil pollen records from lakes and bogs have provided important information on past natural and human-induced vegetation cover. However, those records provide only point estimates of past land cover, and not the spatially continuous maps at regional and sub-continental scales needed for climate modelling. We propose a set of statistical models that create spatially continuous maps of past land cover by combining two data sets: 1) pollen-based point estimates of past land cover (from the REVEALS model) and 2) spatially continuous estimates of past land cover, obtained by combining simulated potential vegetation (from LPJ-GUESS) with an anthropogenic land-cover change scenario (KK10). The proposed models rely on statistical methodology for compositional data and use Gaussian Markov Random Fields to model spatial dependencies in the data. Land-cover reconstructions are presented for three time windows in Europe: 0.05, 0.2, and 6 ka years before present (BP). The models are evaluated through cross-validation, deviance information criteria and by comparing the reconstruction of the 0.05 ka time window to the present-day land-cover data compiled by the European Forest Institute (EFI). For 0.05 ka, the proposed models provide reconstructions that are closer to the EFI data than either the REVEALS- or LPJ-GUESS/KK10-based estimates; thus the statistical combination of the two estimates improves the reconstruction. The reconstruction by the proposed models for 0.2 ka is also good. For 6 ka, however, the large differences between the REVEALS- and LPJ-GUESS/KK10-based estimates reduce the reliability of the proposed models. Possible reasons for the increased differences between REVEALS and LPJ-GUESS/KK10 for older time periods and further improvement of the proposed models are discussed. (C) 2014 Elsevier B.V. All rights reserved.
  •  
24.
  • Rabin, Sam S., et al. (författare)
  • The Fire Modeling Intercomparison Project (FireMIP), phase 1 : Experimental and analytical protocols with detailed model descriptions
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:3, s. 1175-1197
  • Tidskriftsartikel (refereegranskat)abstract
    • The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over 2 decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. In this paper, we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models. We have also created supplementary tables that describe, in thorough mathematical detail, the structure of each model.
  •  
25.
  • Rowlinson, Matthew J., et al. (författare)
  • Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:18, s. 10937-10951
  • Tidskriftsartikel (refereegranskat)abstract
    • pTropospheric ozone concentrations are sensitive to natural emissions of precursor compounds. In contrast to existing assumptions, recent evidence indicates that terrestrial vegetation emissions in the pre-industrial era were larger than in the present day. We use a chemical transport model and a radiative transfer model to show that revised inventories of pre-industrial fire and biogenic emissions lead to an increase in simulated pre-industrial ozone concentrations, decreasing the estimated pre-industrial to present-day tropospheric ozone radiative forcing by up to 34 % (0.38 to 0.25 W mspan classCombining double low line"inline-formula"-2/span). We find that this change is sensitive to employing biomass burning and biogenic emissions inventories based on matching vegetation patterns, as the co-location of emission sources enhances the effect on ozone formation. Our forcing estimates are at the lower end of existing uncertainty range estimates (0.2-0.6 W mspan classCombining double low line"inline-formula"-2/span), without accounting for other sources of uncertainty. Thus, future work should focus on reassessing the uncertainty range of tropospheric ozone radiative forcing.
  •  
26.
  • Stephens, Lucas, et al. (författare)
  • Archaeological assessment reveals Earth’s early transformation through land use
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 365:6456, s. 897-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans began to leave lasting impacts on Earth’s surface starting 10,000 to 8000 years ago. Through a synthetic collaboration with archaeologists around the globe, Stephens et al. compiled a comprehensive picture of the trajectory of human land use worldwide during the Holocene (see the Perspective by Roberts). Hunter-gatherers, farmers, and pastoralists transformed the face of Earth earlier and to a greater extent than has been widely appreciated, a transformation that was essentially global by 3000 years before the present.Science, this issue p. 897; see also p. 865Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 years before the present (yr B.P.) to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers, and pastoralists by 3000 years ago, considerably earlier than the dates in the land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by more than 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked for 2000 yr B.P. and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth’s transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon.
  •  
27.
  • Weiberg, Erika, 1971-, et al. (författare)
  • Mediterranean land use systems from prehistory to antiquity : a case study from Peloponnese (Greece)
  • 2019
  • Ingår i: Journal of Land Use Science. - : TAYLOR & FRANCIS LTD. - 1747-423X .- 1747-4248. ; 14:1, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the sustainability of land use systems over time requires an accounting of the diversity of land uses and their varying influences on the environment. Here we present a standardized review of land use systems in the Peloponnese, Greece, from the Neolithic to the Roman period (similar to 6500 BC-AD 300). Using a combination of sources, we synthesize the fundamental information required to characterize and quantify the spatial requirements of land use. We contextualize our results in a discussion of temporal trends, the probable drivers of change, and how these changes can be integrated with the general knowledge of these societies and the overall effect of land use across time. While our review concentrates on the Peloponnese, our methodology is widely applicable where suitable archaeological and historical records are available, and is broadly representative of the prehistoric and early historical evolution of agricultural land use systems in the eastern Mediterranean.
  •  
28.
  •  
29.
  • Zanon, Marco, et al. (författare)
  • European forest cover during the past 12,000 years : A palynological reconstruction based on modern analogs and remote sensing
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This forest maximum is followed by a general decline in all parts of the continent, likely as a result of anthropogenic deforestation. The continuous spatial and temporal nature of our reconstruction, its continental coverage, and gridded format make it suitable for climate, hydrological, and biogeochemical modeling, among other uses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-29 av 29
Typ av publikation
tidskriftsartikel (23)
konferensbidrag (4)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Kaplan, Jed O. (29)
Gaillard, Marie-José ... (7)
Arneth, Almut (6)
Mazier, Florence (5)
Poska, Anneli (5)
Marquer, Laurent (4)
visa fler...
Gaillard, Marie-Jose (3)
Lehsten, Veiko (3)
Molinari, Chiara (3)
Nielsen, Anne Birgit ... (3)
Boles, Oliver (3)
Harrison, Sandy P. (3)
Luterbacher, Jürg (3)
Sugita, Shinya (3)
Fyfe, Ralph (3)
Wagner, Sebastian (3)
Sigl, Michael (3)
Melton, Joe R. (3)
Marchant, Rob (3)
Giesecke, Thomas (2)
Vanniere, Boris (2)
Wacker, Lukas (2)
Smith, Benjamin (2)
Sitch, Stephen (2)
Stocker, Benjamin D. (2)
Krusic, Paul J. (2)
Hickler, Thomas (2)
Buckland, Philip I., ... (2)
Sykes, Martin (2)
Büntgen, Ulf (2)
Esper, Jan (2)
Tegel, Willy (2)
Spessa, Allan (2)
Finné, Martin (2)
Bjune, Anne E. (2)
Lasslop, Gitta (2)
Birks, H. John B. (2)
Nieradzik, Lars (2)
Bonnier, Anton (2)
Weiberg, Erika, 1971 ... (2)
Bradshaw, Richard (2)
Braconnot, Pascale (2)
Kirdyanov, Alexander ... (2)
Myglan, Vladimir S. (2)
Charpentier Ljungqvi ... (2)
McCormick, Michael (2)
Di Cosmo, Nicola (2)
Jungclaus, Johann (2)
de Vaan, Michiel A. ... (2)
Fluet-Chouinard, Eti ... (2)
visa färre...
Lärosäte
Lunds universitet (15)
Linnéuniversitetet (11)
Stockholms universitet (5)
Umeå universitet (3)
Uppsala universitet (3)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Humaniora (4)
Lantbruksvetenskap (2)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy