SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapur Rick) "

Sökning: WFRF:(Kapur Rick)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crow, Andrew R., et al. (författare)
  • Treating murine inflammatory diseases with an anti-erythrocyte antibody
  • 2019
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 11:506
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of autoimmune and inflammatory diseases typically involves immune suppression. In an opposite strategy, we show that administration of the highly inflammatory erythrocyte-specific antibody Ter119 into mice remodels the monocyte cellular landscape, leading to resolution of inflammatory disease. Ter119 with intact Fc function was unexpectedly therapeutic in the K/BxN serum transfer model of arthritis. Similarly, it rapidly reversed clinical disease progression in collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis and completely corrected CAIA-induced increase in monocyte Fcγ receptor II/III expression. Ter119 dose-dependently induced plasma chemokines CCL2, CCL5, CXCL9, CXCL10, and CCL11 with corresponding alterations in monocyte percentages in the blood and liver within 24 hours. Ter119 attenuated chemokine production from the synovial fluid and prevented the accumulation of inflammatory cells and complement components in the synovium. Ter119 could also accelerate the resolution of hypothermia and pulmonary edema in an acute lung injury model. We conclude that this inflammatory anti-erythrocyte antibody simultaneously triggers a highly efficient anti-inflammatory effect with broad therapeutic potential.
  •  
2.
  • Jongerius, Ilse, et al. (författare)
  • The Role of Complement in Transfusion-Related Acute Lung Injury
  • 2019
  • Ingår i: Transfusion Medicine Reviews. - : Elsevier BV. - 0887-7963. ; 33:4, s. 236-242
  • Forskningsöversikt (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is a life-threatening complication of acute respiratory distress occurring within 6 hours of blood transfusion. TRALI is one of the leading causes of transfusion-related fatalities and specific therapies are unavailable. Neutrophils are recognized as the major pathogenic cells, whereas T regulatory cells and dendritic cells appear to be important for protection against TRALI. The pathogenesis, however, is complex and incompletely understood. It is frequently postulated that the complement system plays an important role in the TRALI pathogenesis. In this article, we assess the evidence regarding the involvement of complement in TRALI from both human and animal studies. We hypothesize about the potential connection between the complement system and neutrophils in TRALI. Additionally, we draw parallels between TRALI and other acute pulmonary disorders of acute lung injury and acute respiratory distress syndrome regarding the involvement of complement. We conclude that, even though a role for complement in the TRALI pathogenesis seems plausible, studies investigating the role of complement in TRALI are remarkably limited in number and also present conflicting findings. Different types of TRALI animal models, diverse experimental conditions, and the composition of the gastrointestinal microbiota may perhaps all be factors which contribute to these discrepancies. More systematic studies are warranted to shed light on the contribution of the complement cascade in TRALI. The underlying clinical condition of the patient, which influences the susceptibility to TRALI, as well as the transfusion factor (antibody-mediated vs non–antibody-mediated), will be important to take into consideration when researching the contribution of complement. This should significantly increase our understanding of the role of complement in TRALI and may potentially result in promising new treatment strategies.
  •  
3.
  • Jongruamklang, Philaiphon, et al. (författare)
  • Platelets inhibit erythrocyte invasion by Plasmodium falciparum at physiological platelet:erythrocyte ratios
  • 2022
  • Ingår i: Transfusion Medicine. - : Wiley. - 0958-7578 .- 1365-3148. ; 32:2, s. 168-174
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate the effect of platelet:erythrocyte (P:E) ratios on Plasmodium falciparum erythrocyte invasion.BACKGROUND: Recent reports have shown that platelets are directly involved in the immune response towards P. falciparum during erythrocyte invasion. However, the literature both supports and conflicts with a role for platelets in limiting invasion. Also, the effect of platelet numbers on invasion (parasitemia) has not been thoroughly investigated.METHODS/MATERIALS: The P. falciparum strains FCR3S1.2 and W2mef were cultured with group O erythrocytes. The cultures were synchronised and supplemented with pooled platelets at P:E ratios ranging from 1:100 to 1:2. Parasitemia was measured at 40 h by flow cytometry and by microscopy of blood smears.RESULTS: A linear relationship was observed between reduced invasion and increased platelet numbers at P:E ratios ranging from 1:100 to 1:20. However, this effect was reversed at lower ratios (1:10-1:2). Microscopic evaluation revealed aggregation and attachment of platelets to erythrocytes, but not specifically to parasitised erythrocytes.CONCLUSION: We have shown that under physiological P:E ratios (approx. 1:10-1:40), platelets inhibited P. falciparum invasion in a dose-dependent manner. At ratios of 1:10 and below, platelets did not further increase the inhibitory effect and, although the trend was reversed, inhibition was still maintained.
  •  
4.
  •  
5.
  •  
6.
  • Kapur, Rick, et al. (författare)
  • Binge-reading on immune thrombocytopenia : Everything you ever wanted to know
  • 2023
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 201:5, s. 811-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune thrombocytopenia (ITP) is a complex clinical and pathophysiological autoimmune disorder and in the past decade, thousands of papers have been published on this topic. To shed light on the global scientific output, Ou et al. performed a comprehensive bibliometric analysis of the ITP literature to clarify the major hotspots and future research directions. Commentary on: Ou et al. A bibliometric analysis of primary immune thrombocytopenia from 2011 to 2021. Br J Haematol 2023 (Online ahead of print). doi: 10.1111/bjh.18692.
  •  
7.
  • Kapur, Rick, et al. (författare)
  • Decitabine revives Treg function in ITP
  • 2021
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 138:8, s. 591-592
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Kapur, Rick, et al. (författare)
  • Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury
  • 2018
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 2:13, s. 1651-1663
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is a syndrome of respiratory distress upon blood transfusion and is the leading cause of transfusion-related fatalities. Whether the gut microbiota plays any role in the development of TRALI is currently unknown. We observed that untreated barrier-free (BF) mice suffered from severe antibody-mediated acute lung injury, whereas the more sterile housed specific pathogen-free (SPF) mice and gut flora-depleted BF mice were both protected from lung injury. The prevention of TRALI in the SPF mice and gut flora-depleted BF mice was associated with decreased plasma macrophage inflammatory protein-2 levels as well as decreased pulmonary neutrophil accumulation. DNA sequencing of amplicons of the 16S ribosomal RNA gene revealed a varying gastrointestinal bacterial composition between BF and SPF mice. BF fecal matter transferred into SPF mice significantly restored TRALI susceptibility in SPF mice. These data reveal a link between the gut flora composition and the development of antibody-mediated TRALI in mice. Assessment of gut microbial composition may help in TRALI risk assessment before transfusion.
  •  
9.
  • Kapur, Rick, et al. (författare)
  • Immune functions of platelets
  • 2018
  • Ingår i: Antibody Therapy : Substitution - Immunomodulation - Monoclonal Immunotherapy - Substitution - Immunomodulation - Monoclonal Immunotherapy. - Cham : Springer International Publishing. - 9783319680385 - 9783319680378 ; , s. 241-259
  • Bokkapitel (refereegranskat)abstract
    • Platelets are megakaryocyte-derived cellular fragments lacking a nucleus and are classically known for their crucial role in supporting hemostasis. Besides their hemostatic function, it is becoming increasingly clear that platelets are much more diverse and that they are capable of a wide range of immune-sensing functions. This chapter will focus on these non-hemostatic immunological aspects, especially in an inflammatory setting. The cross talk between platelets and pathogens as well as between platelets and various target cells will be discussed, in order to highlight the emerging and important immune features of platelets.
  •  
10.
  •  
11.
  •  
12.
  • Kapur, Rick, et al. (författare)
  • Osteopontin mediates murine transfusion-related acute lung injury through stimulation of pulmonary neutrophil accumulation.
  • 2019
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 134:1, s. 74-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and is characterized by the onset of acute respiratory distress within 6 hours of a blood transfusion. There are no specific therapies available and the pathogenesis remains unclear. Pre-existing inflammation is a risk factor for TRALI and neutrophils (PMNs) are considered to be the major pathogenic cells mediating lung damage. Osteopontin (OPN) is a multifunctional protein expressed at sites of inflammation and, for example, is involved in pulmonary disorders, can regulate cellular migration and can function as a PMN-chemoattractant. We investigated whether OPN is involved in TRALI-induction by promoting PMN-recruitment to the lungs. Using a previously established murine TRALI model, we found that in contrast to wildtype (WT) mice, OPN knock-out (KO) mice were resistant to antibody-mediated PMN-dependent TRALI induction. Administration of purified OPN to the OPN KO mice, however, restored the TRALI response and pulmonary PMN-accumulation. Alternatively, blockade of OPN in WT mice using an anti-OPN antibody prevented the onset of TRALI induction. Using pulmonary immunohistochemistry, OPN could be specifically detected in the lungs of mice that suffered from TRALI. The OPN-mediated TRALI responses were independent from other PMN-chemoattractants including macrophage inflammatory protein (MIP)-2. These data indicate that OPN is critically required for induction of antibody-mediated murine TRALI through localization to the lungs and stimulation of pulmonary PMN-recruitment. This suggests that anti-OPN antibody-therapy may be a potential strategy to explore in targeting TRALI in patients.
  •  
13.
  •  
14.
  • Kapur, Rick, et al. (författare)
  • Platelets as immune-sensing cells
  • 2016
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 1:1, s. 10-14
  • Tidskriftsartikel (refereegranskat)abstract
  •  
15.
  • Kapur, Rick, et al. (författare)
  • Platelets instruct T reg cells and macrophages in the resolution of lung inflammation
  • 2021
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 218:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelets convey important nonhemostatic immune functions; however, their potential role in resolving pulmonary inflammation remains to be determined. In this issue of JEM, Rossaint et al. (2021. J. Exp. Med. https://doi.org/10.1084/jem.20201353) reveal that platelets contribute to the resolution of pulmonary inflammation by directly recruiting T regulatory (T reg) cells to the lungs and by transcriptionally reprogramming alveolar macrophages toward an anti-inflammatory phenotype.
  •  
16.
  • Kapur, Rick, et al. (författare)
  • T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 129:18, s. 2557-2569
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti-major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion.
  •  
17.
  •  
18.
  • Kapur, Rick, et al. (författare)
  • Thrombopoietin receptor agonist (TPO-RA) treatment raises platelet counts and reduces anti-platelet antibody levels in mice with immune thrombocytopenia (ITP)
  • 2020
  • Ingår i: Platelets. - : Informa UK Limited. - 0953-7104 .- 1369-1635. ; 31:3, s. 399-402
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder in which autoantibodies and/or autoreactive T cells destroy platelets and megakaryocytes in the spleen and bone marrow, respectively. Thrombopoietin receptor agonists (TPO-RA e.g. Romiplostim and Eltrombopag) have made a substantial contribution to the treatment of patients with ITP, which are refractory to first-line treatments and approximately 30% demonstrate sustained elevated platelet counts after drug tapering. How TPO-RA induce these sustained responses is not known. We analyzed the efficacy of a murine TPO-RA in a well-established murine model of active ITP. Treatment with TPO-RA (10 ug/kg, based on pilot dose escalation experiments) significantly raised the platelet counts in ITP-mice. Immunomodulation was assessed by measuring serum IgG anti-platelet antibody levels; TPO-RA-treated mice had significantly reduced IgG anti-platelet antibodies despite the increasing platelet counts. These results suggest that TPO-RA is not only an efficacious therapy but also reduces anti-platelet humoral immunity in ITP.
  •  
19.
  • Lagou, Vasiliki, et al. (författare)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
20.
  • Maouia, Amal, et al. (författare)
  • The Immune Nature of Platelets Revisited
  • 2020
  • Ingår i: Transfusion Medicine Reviews. - : Elsevier BV. - 0887-7963. ; 34:4, s. 209-220
  • Forskningsöversikt (refereegranskat)abstract
    • Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet's ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions.
  •  
21.
  • Marcoux, Genevieve, et al. (författare)
  • Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules
  • 2021
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 138:25, s. 2607-2620
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.
  •  
22.
  • McVey, Mark J, et al. (författare)
  • Transfusion-related Acute Lung Injury in the Perioperative Patient
  • 2019
  • Ingår i: Anesthesiology. - 1528-1175. ; 131:3, s. 693-715
  • Forskningsöversikt (refereegranskat)abstract
    • Transfusion-related acute lung injury is a leading cause of death associated with the use of blood products. Transfusion-related acute lung injury is a diagnosis of exclusion which can be difficult to identify during surgery amid the various physiologic and pathophysiologic changes associated with the perioperative period. As anesthesiologists supervise delivery of a large portion of inpatient prescribed blood products, and since the incidence of transfusion-related acute lung injury in the perioperative patient is higher than in nonsurgical patients, anesthesiologists need to consider transfusion-related acute lung injury in the perioperative setting, identify at-risk patients, recognize early signs of transfusion-related acute lung injury, and have established strategies for its prevention and treatment.
  •  
23.
  • Nelson, Vivianne S., et al. (författare)
  • Platelets in ITP : Victims in charge of their own fate?
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:11
  • Forskningsöversikt (refereegranskat)abstract
    • Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder. The pathophysiological mechanisms leading to low platelet levels in ITP have not been resolved, but at least involve autoantibody-dependent and/or cytotoxic T cell mediated platelet clearance and impaired megakary-opoiesis. In addition, T cell imbalances involving T regulatory cells (Tregs) also appear to play an important role. Intriguingly, over the past years it has become evident that platelets not only mediate hemostasis, but are able to modulate inflammatory and immunological processes upon activation. Platelets, therefore, might play an immuno-modulatory role in the pathogenesis and pathophysiology of ITP. In this respect, we propose several possible pathways in which platelets themselves may participate in the immune response in ITP. First, we will elaborate on how platelets might directly promote inflammation or stimulate immune responses in ITP. Second, we will discuss two ways in which platelet microparticles (PMPs) might contribute to the disrupted immune balance and impaired thrombopoiesis by megakaryocytes in ITP. Importantly, from these insights, new starting points for further research and for the design of potential future therapies for ITP can be envisioned.
  •  
24.
  •  
25.
  • Rebetz, Johan, et al. (författare)
  • The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury
  • 2018
  • Ingår i: Transfusion Medicine and Hemotherapy. - : S. Karger AG. - 1660-3796 .- 1660-3818. ; 45:5, s. 290-298
  • Tidskriftsartikel (refereegranskat)abstract
    • The acute respiratory distress syndrome (ARDS) is a serious and common complication of multiple medical and surgical interventions, with sepsis, pneumonia, and aspiration of gastric contents being common risk factors. ARDS develops within 1 week of a known clinical insult or presents with new/worsening respiratory symptoms if the clinical insult is unknown. Approximately 40% of the ARDS cases have a fatal outcome. Transfusion-related acute lung injury (TRALI), on the other hand, is characterized by the occurrence of respiratory distress and acute lung injury, which presents within 6 h after administration of a blood transfusion. In contrast to ARDS, acute lung injury in TRALI is not attributable to another risk factor for acute lung injury. 'Possible TRALI', however, may have a clear temporal relationship to an alternative risk factor for acute lung injury. Risk factors for TRALI include chronic alcohol abuse and systemic inflammation. TRALI is the leading cause of transfusionrelated fatalities. There are no specific therapies available for ARDS or TRALI as both have a complex and incompletely understood pathogenesis. Neutrophils (polymorphonuclear leukocytes; PMNs) have been suggested to be key effector cells in the pathogenesis of both syndromes. In the present paper, we summarize the literature with regard to PMN involvement in the pathogenesis of both ARDS and TRALI based on both human data as well as on animal models. The evidence generally supports a strong role for PMNs in both ARDS and TRALI. More research is required to shed light on the pathogenesis of these respiratory syndromes and to more thoroughly establish the nature of the PMN involvement, especially considering the heterogeneous etiologies of ARDS.
  •  
26.
  • Semple, John W., et al. (författare)
  • An update on the pathophysiology of immune thrombocytopenia
  • 2020
  • Ingår i: Current Opinion in Hematology. - 1531-7048. ; 27:6, s. 423-429
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder mediated by antiplatelet autoantibodies and antigen-specific T cells that either destroy platelets peripherally in the spleen or impair platelet production in the bone marrow. There have been a plethora of publications relating to the pathophysiology of ITP and since January of 2019, at least 50 papers have been published on ITP pathophysiology. PURPOSE OF REVIEW: To summarize the literature relating to the pathophysiology of ITP including the working mechanisms of therapies, T-cell and B-cell physiology, protein/RNA/DNA biochemistry, and animal models in an attempt to unify the perceived abnormal immune processes. RECENT FINDINGS: The most recent pathophysiologic irregularities associated with ITP relate to abnormal T-cell responses, particularly, defective T regulatory cell activity and how therapeutics can restore these responses. The robust literature on T cells in ITP points to the notion that ITP is a disease initiated by faulty self-tolerance mechanisms very much like that of other organ-specific autoimmune diseases. There is also a large literature on new and existing animal models of ITP and these will be discussed. It appears that understanding how to specifically modulate T cells in patients with ITP will undoubtedly lead to effective antigen-specific therapeutics. CONCLUSIONS: ITP is predominately a T cell disorder which leads to a breakdown in self tolerance mechanisms and allows for the generation of anti-platelet autoantibodies and T cells. Novel therapeutics that target T cells may be the most effective way to perhaps cure this disorder.
  •  
27.
  •  
28.
  • Semple, John W., et al. (författare)
  • Moving target PF4 directs HIT responses
  • 2018
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 132:7, s. 678-679
  • Forskningsöversikt (refereegranskat)abstract
    • In this issue of Blood, Dai et al demonstrate a dynamic interchange of cell surface-bound platelet factor 4 (PF4) among hematopoietic and vascular cells that may limit the thrombocytopenia and promote prothrombotic processes in heparin-induced thrombocytopenia (HIT).
  •  
29.
  • Semple, John W., et al. (författare)
  • Protecting the fetus from FNAIT
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2097-2099
  • Tidskriftsartikel (refereegranskat)
  •  
30.
  • Semple, John W, et al. (författare)
  • Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies
  • 2018
  • Ingår i: Critical Care Medicine. - 1530-0293. ; 46:5, s. 452-458
  • Forskningsöversikt (refereegranskat)abstract
    • Objectives: Transfusion-related acute lung injury is characterized by the onset of respiratory distress and acute lung injury following blood transfusion, but its pathogenesis remains poorly understood. Generally, a two-hit model is presumed to underlie transfusion-related acute lung injury with the first hit being risk factors present in the transfused patient (such as inflammation), whereas the second hit is conveyed by factors in the transfused donor blood (such as antileukocyte antibodies). At least 80% of transfusion-related acute lung injury cases are related to the presence of donor antibodies such as antihuman leukocyte or antihuman neutrophil antibodies. The remaining cases may be related to nonantibody-mediated factors such as biolipids or components related to storage and ageing of the transfused blood cells. At present, transfusion-related acute lung injury is the leading cause of transfusion-related fatalities and no specific therapy is clinically available. In this article, we critically appraise and discuss recent preclinical (bench) insights related to transfusion-related acute lung injury pathogenesis and their therapeutic potential for future use at the patients’ bedside in order to combat this devastating and possibly fatal complication of transfusion.Data Sources: We searched the PubMed database (until August 22, 2017).Study Selection: Using terms: “Transfusion-related acute lung injury,” “TRALI,” “TRALI and therapy,” “TRALI pathogenesis.”Data Extraction: English-written articles focusing on transfusion-related acute lung injury pathogenesis, with potential therapeutic implications, were extracted.Data Synthesis: We have identified potential therapeutic approaches based on the literature.Conclusions: We propose that the most promising therapeutic strategies to explore are interleukin-10 therapy, down-modulating C-reactive protein levels, targeting reactive oxygen species, or blocking the interleukin-8 receptors; all focused on the transfused recipient. In the long-run, it may perhaps also be advantageous to explore other strategies aimed at the transfused recipient or aimed toward the blood product, but these will require more validation and confirmation first.
  •  
31.
  •  
32.
  • Semple, John W., et al. (författare)
  • The Ultimate Murine Model of Immune Thrombocytopaenia
  • 2019
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 119:3, s. 353-354
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
33.
  • Semple, John W, et al. (författare)
  • Transfusion-associated circulatory overload and transfusion-related acute lung injury.
  • 2019
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 133:17, s. 1840-1853
  • Forskningsöversikt (refereegranskat)abstract
    • Transfusion-associated circulatory overload (TACO) and Transfusion-related acute lung injury (TRALI) are syndromes of acute respiratory distress which occur within 6 hours of blood transfusion. TACO and TRALI are the leading causes of transfusion-related fatalities and specific therapies are unavailable. Diagnostically, it remains very challenging to distinguish TACO and TRALI from underlying causes of lung injury and/or fluid overload as well as from each other. TACO is characterized by pulmonary hydrostatic (cardiogenic) edema, while TRALI presents as pulmonary permeability edema (noncardiogenic). The pathophysiology of both syndromes is complex and incompletely understood. A 2-hit model is generally assumed to underlie TACO and TRALI disease pathology where the first hit represents the clinical condition of the patient and the second hit is conveyed by the transfusion product. In TACO, cardiac- or renal impairment and positive fluid balance appear first hits while suboptimal fluid management or other components in the transfused product may enable the second hit. Remarkably, other factors beyond volume play a role in TACO. In TRALI, the first hit can, for example, be represented by inflammation while the second hit is assumed to be caused by anti-leukocyte antibodies or biological response modifiers (e.g. lipids). In this review, we provide an up-to-date overview of TACO and TRALI regarding clinical definitions, diagnostic strategies, pathophysiological mechanisms and potential therapies. More research is required to better understand the TACO and TRALI pathophysiology and more biomarker studies are warranted. Collectively, this may result in improved diagnostics and development of therapeutic approaches for these life-threating transfusion reactions.
  •  
34.
  •  
35.
  • Van Der Laan, Eveline A.N.Zeeuw, et al. (författare)
  • Biological and structural characterization of murine TRALI antibody reveals increased Fc-mediated complement activation
  • 2020
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 4:16, s. 3875-3885
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) remains a leading cause of transfusionrelated deaths. In most cases, anti-leukocyte antibodies in the transfusion product trigger TRALI, but not all anti-leukocyte antibodies cause TRALI. It has been shown that the anti-major histocompatibility complex (MHC) class I antibody 34-1-2S (anti-H-2Kd) causes TRALI in BALB/c mice (MHC class I haplotype H-2Kd), whereas SF1.1.10 (anti-H-2Kd) does not. In C57BL/6 mice (MHC class I haplotype H-2Kb), TRALI only occurs when anti-MHC class I antibody AF6-88.5.5.3 (anti-H-2Kb) is administered together with a high dose of 34-1-2S. It remains unknown which specific antibody characteristics are responsible for eliciting TRALI. We therefore investigated several biological and structural features of 34-1-2S compared with other anti-MHC class I antibodies, which on their own do not cause TRALI: SF1.1.10 and AF6-88.5.5.3. No substantial differences were observed between the TRALIcausing 34-1-2S and the TRALI-resistant SF1.1.10 regarding binding affinity to H-2Kd. Regarding binding affinity to H-2Kb, only AF6-88.5.5.3 potently bound to H-2Kb, whereas 34-1-2S exhibited weak but significant cross-reactivity. Furthermore, the binding affinity to FcgRs as well as the Fc glycan composition seemed to be similar for all antibodies. Similar Fc glycosylation profiles were also observed for human TRALI-causing donor anti-HLA antibodies compared with human anti-HLA antibodies from control donors. 34-1-2S, however, displayed superior complement activation capacity, which was fully Fc dependent and not significantly dependent on Fc glycosylation. We conclude that TRALI induction is not correlated with Fab- A nd Fc-binding affinities for antigen and FcgRs, respectively, nor with the composition of Fc glycans; but increased Fc-mediated complement activation is correlated with TRALI induction.
  •  
36.
  • Zeeuw van der Laan, Eveline A.N., et al. (författare)
  • Evaluation of Platelet Responses in Transfusion-Related Acute Lung Injury (TRALI)
  • 2020
  • Ingår i: Transfusion Medicine Reviews. - : Elsevier BV. - 0887-7963. ; 34:4, s. 227-233
  • Forskningsöversikt (refereegranskat)abstract
    • Platelets are versatile cells which are capable of eliciting nonhemostatic immune functions, especially under inflammatory conditions. Depending on the specific setting, platelets may be either protective or pathogenic in acute lung injury and acute respiratory distress syndrome (ARDS). Their role in transfusion-related acute lung injury (TRALI) is less well defined; however, it has been hypothesized that recipient platelets and transfused platelets both play a pathogenic role in TRALI. Overall, despite conflicting findings, it appears that recipient platelets may play a pathogenic role in antibody-mediated TRALI; however, their contribution appears to be limited. It is imperative to first validate the involvement of recipient platelets by standardizing the animal models, methods, reagents, and readouts for lung injury and taking the animal housing environment into consideration. For the involvement of transfused platelets in TRALI, it appears that predominantly lipids such as ceramide in stored platelets are able to induce TRALI in animal models. These studies will also need to be validated, and moreover, the platelet-derived lipid-mediated mechanisms leading to TRALI will need to be investigated.
  •  
37.
  • Zeeuw van der Laan, Eveline A.N., et al. (författare)
  • Update on the pathophysiology of transfusion-related acute lung injury
  • 2020
  • Ingår i: Current Opinion in Hematology. - 1531-7048. ; 27:6, s. 386-391
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE OF REVIEW: The aim of this study was to discuss recent advances regarding the pathogenesis of transfusion-related acute lung injury (TRALI), which highlight the pathogenic role of macrophages. RECENT FINDINGS: TRALI remains a leading cause of transfusion-related fatalities, despite the success of the mitigation strategy, and therapeutic approaches are unavailable. Neutrophils (PMNs) are recognized pathogenic cells in TRALI. Macrophages have previously also been suggested to be pathogenic in mice via binding of C5a to their C5a-receptor, producing reactive oxygen species (ROS), which damages the pulmonary endothelium. Recent work has further highlighted the role of macrophages in the TRALI-pathogenesis. It has been shown that the protein osteopontin (OPN) released by macrophages is critical for pulmonary PMN recruitment in mice suffering from TRALI and that targeting OPN prevents the occurrence of TRALI. Another recent study demonstrated the importance of M1-polarized alveolar macrophages in murine TRALI induction by showing that α1-antitrypsin (AAT) overexpression prevented TRALI in mice through decreasing the polarization of alveolar macrophages towards the M1 phenotype. SUMMARY: Apart from PMNs, macrophages also appear to be important in the pathogenesis of TRALI. Targeting the pathogenic functions of macrophages may be a promising therapeutic strategy to explore in TRALI.
  •  
38.
  • Zufferey, Anne, et al. (författare)
  • Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets
  • 2017
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 1:20, s. 1773-1785
  • Tidskriftsartikel (refereegranskat)abstract
    • Megakaryocytes (MKs) are bone marrow-derived cells that are primarily responsible for generating platelets for the maintenance of hemostasis. Although MK can variably express major histocompatibility complex (MHC) class I and II molecules during their differentiation, little is known whether they can elicit nonhemostatic immune functions such as T-cell activation. Here, we demonstrate that mature CD342 MHC class II2 CD411 MKs can endocytose exogenous ovalbumin (OVA) and proteolytically generate its immunogenic peptide ligand, which is crosspresented on their surface in association with MHC class I molecules. This crosspresentation triggered in vitro and in vivo OVA-specific CD81 T-cell activation and proliferation. In addition, the OVA-MHC class I complexes were transferred from MK to pro-platelets upon thrombopoiesis in vitro. MK could also present endogenous MK-associated (CD61) peptides to activate CD61-specific CD81 T cells and mediate immune thrombocytopenia in vivo. These results suggest that, in addition to their hemostatic role, mature MKs can significantly affect antigen-specific CD81 T-cell responses via antigen presentation and are able to spread this immunogenic information through platelets.
  •  
39.
  • Zufferey, Anne, et al. (författare)
  • Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP)
  • 2017
  • Ingår i: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 6:2
  • Forskningsöversikt (refereegranskat)abstract
    • Immune thrombocytopenia (ITP) is a complex autoimmune disease characterized by low platelet counts. The pathogenesis of ITP remains unclear although both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells, cytokine imbalances, and the contribution of the bone marrow niche have now been recognized to be important. Treatment strategies are aimed at the restoration of platelet counts compatible with adequate hemostasis rather than achieving physiological platelet counts. The first line treatments focus on the inhibition of autoantibody production and platelet degradation, whereas second-line treatments include immunosuppressive drugs, such as Rituximab, and splenectomy. Finally, thirdline treatments aim to stimulate platelet production by megakaryocytes. This review discusses the pathophysiology of ITP and how the different treatment modalities affect the pathogenic mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy