SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapyla J.) "

Sökning: WFRF:(Kapyla J.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kapyla, M. J., et al. (författare)
  • Multiple dynamo modes as a mechanism for long-term solar activity variations
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 589
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar magnetic activity shows both smooth secular changes, such as the modern Grand Maximum, and quite abrupt drops that are denoted as grand minima, such as the Maunder Minimum. Direct numerical simulations (DNS) of convection-driven dynamos off er one way of examining the mechanisms behind these events. Aims. In this work, we analyze a solution of a solar-like DNS that was evolved for roughly 80 magnetic cycles of 4.9 years and where epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. Methods. The DNS employed is a semi-global (wedge-shaped) magnetoconvection model. For the data analysis tasks we use Ensemble Empirical Mode Decomposition and phase dispersion methods, as they are well suited for analyzing cyclic (non-periodic) signals. Results. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like (equatorward migration at low latitudes and poleward at high latitudes). This mode is accompanied by a higher frequency mode near the surface and at low latitudes, showing poleward migration, and a low-frequency mode at the bottom of the convection zone. The low-frequency mode is almost purely antisymmetric with respect to the equator, while the dominant mode has strongly fluctuating mixed parity. The overall behavior of the dynamo solution is extremely complex, exhibiting variable cycle lengths, epochs of disturbed and even ceased surface activity, and strong short-term hemispherical asymmetries. Surprisingly, the most prominent suppressed surface activity epoch is actually a global magnetic energy maximum; during this epoch the bottom toroidal magnetic field obtains a maximum, demonstrating that the interpretation of grand minima-type events is non-trivial. The hemispherical asymmetries are seen only in the magnetic field, while the velocity field exhibits considerably weaker asymmetry. Conclusions. We interpret the overall irregular behavior as being due to the interplay of the different dynamo modes showing different equatorial symmetries, especially the smoother part of the irregular variations being related to the variations of the mode strengths, evolving with different and variable cycle lengths. The abrupt low-activity epoch in the dominant dynamo mode near the surface is related to a strong maximum of the bottom toroidal field strength, which causes abrupt disturbances especially in the differential rotation profile via the suppression of the Reynolds stresses.
  •  
2.
  • Madar Johansson, Miralda, et al. (författare)
  • The binding mechanism of the virulence factor Streptococcus suis adhesin P subtype to globotetraosylceramide is associated with systemic disease
  • 2020
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 295:42, s. 14305-14324
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus suis is part of the pig commensal microbiome but strains can also be pathogenic, causing pneumonia and meningitis in pigs as well as zoonotic meningitis. According to genomic analysis, S. suis is divided into asymptomatic carriage, respiratory and systemic strains with distinct genomic signatures. Because the strategies to target pathogenic S. suis are limited, new therapeutic approaches are needed. The virulence factor S. suis adhesin P (SadP) recognizes the galabiose Gal alpha 1-4Gal-oligosaccharide. Based on its oligosaccharide fine specificity, SadP can be divided into subtypes P-N and P-O. We show here that subtype P-N is distributed in the systemic strains causing meningitis, whereas type P-O is found in asymptomatic carriage and respiratory strains. Both types of SadP are shown to predominantly bind to pig lung globotriaosylceramide (Gb3). However, SadP adhesin from systemic subtype P-N strains also binds to globotetraosylceramide (Gb4). Mutagenesis studies of the galabiose-binding domain of type P-N SadP adhesin showed that the amino acid asparagine 285, which is replaced by an aspartate residue in type P-O SadP, was required for binding to Gb4 and, strikingly, was also required for interaction with the glycomimetic inhibitor phenylurea-galabiose. Molecular dynamics simulations provided insight into the role of Asn-285 for Gb4 and phenylurea-galabiose binding, suggesting additional hydrogen bonding to terminal GalNAc of Gb4 and the urea group. Thus, the Asn-285-mediated molecular mechanism of type P-N SadP binding to Gb4 could be used to selectively target S. suis in systemic disease without interfering with commensal strains, opening up new avenues for interventional strategies against this pathogen.
  •  
3.
  • Karak, Bidya Binay, et al. (författare)
  • Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Late-type stars rotate differentially owing to anisotropic turbulence in their outer convection zones. The rotation is called solar-like (SL) when the equator rotates fastest and anti-solar (AS) otherwise. Hydrodynamic simulations show a transition from SL to AS rotation as the influence of rotation on convection is reduced, but the opposite transition occurs at a different point in the parameter space. The system is bistable, i.e., SL and AS rotation profiles can both be stable. Aims. We study the effect of a dynamo-generated magnetic field on the large-scale flows, particularly on the possibility of bistable behaviour of differential rotation. Methods. We solve the hydromagnetic equations numerically in a rotating spherical shell that typically covers +/- 75 degrees latitude (wedge geometry) for a set of different radiative conductivities controlling the relative importance of convection. We analyse the resulting differential rotation, meridional circulation, and magnetic field and compare the corresponding modifications of the Reynolds and Maxwell stresses. Results. In agreement with earlier findings, our models display SL rotation profiles when the rotational influence on convection is strong and a transition to AS when the rotational influence decreases. We find that dynamo-generated magnetic fields help to produce SL differential rotation compared to the hydrodynamic simulations. We do not observe any bistable states of differential rotation. In the AS cases we find coherent single-cell meridional circulation, whereas in SL cases we find multi-cellular patterns. In both cases, we obtain poleward circulation near the surface with a magnitude close to that observed in the Sun. In the slowly rotating cases, we find activity cycles, but no clear polarity reversals, whereas in the more rapidly rotating cases irregular variations are obtained. Moreover, both differential rotation and meridional circulation have significant temporal variations that are similar in strength to those of the Sun. Conclusions. Purely hydrodynamic simulations of differential rotation and meridional circulation are shown to be of limited relevance as magnetic fields, self-consistently generated by dynamo action, significantly affect the flows.
  •  
4.
  • Kapyla, P. J., et al. (författare)
  • Small-scale dynamos in simulations of stratified turbulent convection
  • 2018
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley-VCH Verlagsgesellschaft. - 0004-6337 .- 1521-3994. ; 339:2-3, s. 127-133
  • Tidskriftsartikel (refereegranskat)abstract
    • Small-scale dynamo action is often held responsible for the generation of quiet Sun magnetic fields. We aim to determine the excitation conditions and saturation level of small-scale dynamos in nonrotating turbulent convection at low magnetic Prandtl numbers. We use high-resolution direct numerical simulations of weakly stratified turbulent convection. We find that the critical magnetic Reynolds number for dynamo excitation increases as the magnetic Prandtl number is decreased, which might suggest that small-scale dynamo action is not automatically evident in bodies with small magnetic Prandtl numbers, such as the Sun. As a function of the magnetic Reynolds number (Rm), the growth rate of the dynamo is consistent with an Rm(1/2) scaling. No evidence for a logarithmic increase of the growth rate with Rm is found.
  •  
5.
  • Singh, Nishant K., et al. (författare)
  • f-mode strengthening from a localised bipolar subsurface magnetic field
  • 2019
  • Ingår i: Geophysical and Astrophysical Fluid Dynamics. - : TAYLOR & FRANCIS LTD. - 0309-1929 .- 1029-0419.
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent numerical work in helioseismology has shown that a periodically varying subsurface magnetic field leads to a fanning of the f-mode, which emerges from a density jump at the surface. In an attempt to model a more realistic situation, we now modulate this periodic variation with an envelope, giving thus more emphasis on localised bipolar magnetic structures in the middle of the domain. Some notable findings are: (i) compared to the purely hydrodynamic case, the strength of the f-mode is significantly larger at high horizontal wavenumbers k, but the fanning is weaker for the localised subsurface magnetic field concentrations investigated here than the periodic ones studied earlier; (ii) when the strength of the magnetic field is enhanced at a fixed depth below the surface, the fanning of the f-mode in the diagram increases proportionally in such a way that the normalised f-mode strengths remain nearly the same in different such cases; (iii) the unstable Bloch modes reported previously in case of harmonically varying magnetic fields are now completely absent when more realistic localised magnetic field concentrations are imposed beneath the surface, thus suggesting that the Bloch modes are unlikely to be supported during most phases of the solar cycle; (iv) the f-mode strength appears to depend also on the depth of magnetic field concentrations such that it shows a relative decrement when the maximum of the magnetic field is moved to a deeper layer. We argue that detections of f-mode perturbations such as those being explored here could be effective tracers of solar magnetic fields below the photosphere before these are directly detectable as visible manifestations in terms of active regions or sunspots.
  •  
6.
  • Willamo, T., et al. (författare)
  • Long-term spot monitoring of the young solar analogue V889 Herculis
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Starspots are important manifestations of stellar magnetic activity. By studying their behaviour in young solar analogues, we can unravel the properties of their magnetic cycles. This gives crucial information of the underlying dynamo process. Comparisons with the solar cycle enable us to infer knowledge about how the solar dynamo has evolved during the Sun's lifetime.Aims: Here we study the correlation between photometric brightness variations, spottedness, and mean temperature in V889 Her, a young solar analogue. Our data covers 18 years of spectroscopic and 25 years of photometric observations.Methods: We use Doppler imaging to derive temperature maps from high-resolution spectra. We use the Continuous Period Search method to retrieve mean V-magnitudes from photometric data.Results: Our Doppler imaging maps show a persistent polar spot structure varying in strength. This structure is centred slightly off the rotational pole. The mean temperature derived from the maps shows an overall decreasing trend, as does the photometric mean brightness, until it reaches its minimum around 2017. The filling factor of cool spots, however, shows only a weak tendency to anti-correlate with the decreasing mean brightness.Conclusions: We interpret V889 Her to have entered into a grand maximum in its activity. The clear relation between the mean temperature of the Doppler imaging surface maps and the mean magnitude supports the reliability of the Doppler images. The lack of correlation between the mean magnitude and the spottedness may indicate that bright features in the Doppler images are real.
  •  
7.
  • Hackman, T., et al. (författare)
  • Zeeman-Doppler imaging of active young solar-type stars
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo.Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars.Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique.Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an alpha(2)-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots.Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Kapyla, Petri, et al. (författare)
  • Confirmation of bistable stellar differential rotation profiles
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims. We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (A effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods. We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 10(2). We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results. Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions. Conclusions. Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers, and thus longer in time, before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation profiles for models in the solar parameter regime.
  •  
13.
  • Käpylä, Petri, et al. (författare)
  • Magnetic flux concentrations from turbulent stratified convection
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained. Aims. We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods. We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8 : 5 24 Mm of the solar convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep models is more than 3 x 10(3) or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in order to concentrate on purely magnetohydrodynamic effects. Results. We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high density stratification, corresponding to domain depths of 12 : 5 and 24 Mm. The size of the concentrations increases as the box size increases and the largest structures (20 Mm horizontally near the surface) are obtained in the models that are 24 Mm deep. The field strength in the concentrations is in the range of 3-5 kG, almost independent of the magnitude of the imposed field. The amplitude of the concentrations grows approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in most of the domain, which is unfavourable for the operation of the negative effective magnetic pressure instability (NEMPI). Simulations in which a passive vector field is evolved do not show a noticeable difference from magnetohydrodynamic runs in terms of the growth of the structures. Furthermore, we find that magnetic flux is concentrated in regions of converging flow corresponding to large-scale supergranulation convection pattern. Conclusions. The linear growth of large-scale flux concentrations implies that their dominant formation process is a tangling of the large-scale field rather than an instability. One plausible mechanism that can explain both the linear growth and the concentration of the flux in the regions of converging flow pattern is flux expulsion. A possible reason for the absence of NEMPI is that the derivative of the effective magnetic pressure with respect to the mean magnetic field has an unfavourable sign. Furthermore, there may not be sufficient scale separation, which is required for NEMPI to work.
  •  
14.
  • Vaisala, Miikka S., et al. (författare)
  • Interaction of Large- and Small-scale Dynamos in Isotropic Turbulent Flows from GPU-accelerated Simulations
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetohydrodynamical (MHD) dynamos emerge in many different astrophysical situations where turbulence is present, but the interaction between large-scale dynamos (LSDs) and small-scale dynamos (SSDs) is not fully understood. We performed a systematic study of turbulent dynamos driven by isotropic forcing in isothermal MHD with magnetic Prandtl number of unity, focusing on the exponential growth stage. Both helical and nonhelical forcing was employed to separate the effects of LSD and SSD in a periodic domain. Reynolds numbers (ReM) up to similar to 250 were examined and multiple resolutions used for convergence checks. We ran our simulations with the Astaroth code, designed to accelerate 3D stencil computations on graphics processing units (GPUs) and to employ multiple GPUs with peer-to-peer communication. We observed a speedup of approximate to 35 in single-node performance compared to the widely used multi-CPU MHD solver Pencil Code. We estimated the growth rates from both the averaged magnetic fields and their power spectra. At low ReM LSD growth dominates, but at high ReM SSD appears to dominate in both helically and nonhelically forced cases. Pure SSD growth rates follow a logarithmic scaling as a function of ReM. Probability density functions of the magnetic field from the growth stage exhibit SSD behavior in helically forced cases even at intermediate ReM. We estimated mean field turbulence transport coefficients using closures like the second-order correlation approximation (SOCA). They yield growth rates similar to the directly measured ones and provide evidence of a quenching. Our results are consistent with the SSD inhibiting the growth of the LSD at moderate ReM, while the dynamo growth is enhanced at higher ReM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy