SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlof Eva) "

Sökning: WFRF:(Karlof Eva)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Suur, Bianca E., et al. (författare)
  • Therapeutic potential of the Proprotein Convertase Subtilisin/Kexin family in vascular disease
  • 2022
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Proprotein convertase subtilisin/kexins (PCSKs) constitute a family of nine related proteases: PCSK1-7, MBTPS1, and PCSK9. Apart from PCSK9, little is known about PCSKs in cardiovascular disease. Here, we aimed to investigate the expression landscape and druggability potential of the entire PCSK family for CVD. We applied an integrative approach, combining genetic, transcriptomic and proteomic data from three vascular biobanks comprising carotid atherosclerosis, thoracic and abdominal aneurysms, with patient clinical parameters and immunohistochemistry of vascular biopsies. Apart from PCSK4, all PCSK family members lie in genetic regions containing variants associated with human cardiovascular traits. Transcriptomic analyses revealed that FURIN, PCSK5, MBTPS1 were downregulated, while PCSK6/7 were upregulated in plaques vs. control arteries. In abdominal aneurysms, FURIN, PCSK5, PCSK7, MBTPS1 were downregulated, while PCSK6 was enriched in diseased media. In thoracic aneurysms, only FURIN was significantly upregulated. Network analyses of the upstream and downstream pathways related to PCSKs were performed on the omics data from vascular biopsies, revealing mechanistic relationships between this protein family and disease. Cell type correlation analyses and immunohistochemistry showed that PCSK transcripts and protein levels parallel each other, except for PCSK9 where transcript was not detected, while protein was abundant in vascular biopsies. Correlations to clinical parameters revealed a positive association between FURIN plaque levels and serum LDL, while PCSK6 was negatively associated with Hb. PCSK5/6/7 were all positively associated with adverse cardiovascular events. Our results show that PCSK6 is abundant in plaques and abdominal aneurysms, while FURIN upregulation is characteristic for thoracic aneurysms. PCSK9 protein, but not the transcript, was present in vascular lesions, suggesting its accumulation from circulation. Integrating our results lead to the development of a novel 'molecular' 5D framework. Here, we conducted the first integrative study of the proprotein convertase family in this context. Our results using this translational pipeline, revealed primarily PCSK6, followed by PCSK5, PCSK7 and FURIN, as proprotein convertases with the highest novel therapeutic potential.
  •  
2.
  • Buckler, Andrew J., et al. (författare)
  • Patient-specific biomechanical analysis of atherosclerotic plaques enabled by histologically validated tissue characterization from computed tomography angiography : A case study
  • 2022
  • Ingår i: Journal of The Mechanical Behavior of Biomedical Materials. - : Elsevier BV. - 1751-6161 .- 1878-0180. ; 134
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Rupture of unstable atherosclerotic plaques with a large lipid-rich necrotic core and a thin fibrous cap cause myocardial infarction and stroke. Yet it has not been possible to assess this for individual patients. Clinical guidelines still rely on use of luminal narrowing, a poor indicator but one that persists for lack of effective means to do better. We present a case study demonstrating the assessment of biomechanical indices pertaining to plaque rupture risk non-invasively for individual patients enabled by histologically validated tissue characterization. Methods: Routinely acquired clinical images of plaques were analyzed to characterize vascular wall tissues using software validated by histology (ElucidVivo, Elucid Bioimaging Inc.). Based on the tissue distribution, wall stress and strain were then calculated at spatial locations with varied fibrous cap thicknesses at diastolic, mean and systolic blood pressures. Results: The von Mises stress of 152 [131, 172] kPa and the equivalent strain of 0.10 [0.08, 0.12] were calculated where the fibrous cap thickness was smallest (560 mu m) (95% CI in brackets). The stress at this location was at a level predictive of plaque failure. Stress and strain at locations with larger cap thicknesses were calculated to be lower, demonstrating a clinically relevant range of risk levels. Conclusion: Patient specific tissue characterization can identify distributions of stress and strain in a clinically relevant range. This capability may be used to identify high-risk lesions and personalize treatment decisions for individual patients with cardiovascular disease and improve prevention of myocardial infarction and stroke.
  •  
3.
  • Buckler, Andrew J., et al. (författare)
  • Virtual Transcriptomics Noninvasive Phenotyping of Atherosclerosis by Decoding Plaque Biology From Computed Tomography Angiography Imaging
  • 2021
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 41:5, s. 1738-1750
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Therapeutic advancements in atherosclerotic cardiovascular disease have improved prevention of ischemic stroke and myocardial infarction, but diagnostic methods for atherosclerotic plaque phenotyping to aid individualized therapy are lacking. In this feasibility study, we aimed to elucidate plaque biology by decoding the molecular phenotype of plaques through analysis of computed-tomography angiography images, making a predictive model for plaque biology referred to as virtual transcriptomics. Approach and Results: We employed machine intelligence using paired computed-tomography angiography and transcriptomics from carotid endarterectomies of 40 patients undergoing stroke-preventive surgery for carotid stenosis. Computed tomography angiographies were analyzed with novel software for accurate characterization of plaque morphology and plaque transcriptomes obtained from microarrays, followed by mathematical modeling for prediction of molecular signatures. Four hundred fourteen coding and noncoding RNAs were robustly predicted using supervised models to estimate gene expression based on plaque morphology. Examples of predicted transcripts included ion transporters, cytokine receptors, and a number of microRNAs whereas pathway analyses demonstrated enrichment of several biological processes relevant for the pathophysiology of atherosclerosis and plaque instability. Finally, the ability of the models to predict plaque gene expression was demonstrated using computed tomography angiographies from 4 sequestered patients and comparisons with transcriptomes of corresponding lesions. Conclusions: The results of this pilot study show that atherosclerotic plaque phenotyping by image analysis of conventional computed-tomography angiography can elucidate the molecular signature of atherosclerotic lesions in a multiscale setting. The study holds promise for optimized personalized therapy in the prevention of myocardial infarction and ischemic stroke, which warrants further investigations in larger cohorts.
  •  
4.
  • Seime, Till, et al. (författare)
  • Biomechanical Assessment of Macro-Calcification in Human Carotid Atherosclerosis and Its Impact on Smooth Muscle Cell Phenotype
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:20, s. 3279-
  • Tidskriftsartikel (refereegranskat)abstract
    • Intimal calcification and vascular stiffening are predominant features of end-stage atherosclerosis. However, their role in atherosclerotic plaque instability and how the extent and spatial distribution of calcification influence plaque biology remain unclear. We recently showed that extensive macro calcification can be a stabilizing feature of late-stage human lesions, associated with a reacquisition of more differentiated properties of plaque smooth muscle cells (SMCs) and extracellular matrix (ECM) remodeling. Here, we hypothesized that biomechanical forces related to macro-calcification within plaques influence SMC phenotype and contribute to plaque stabilization. We generated a finite element modeling (FEM) pipeline to assess plaque tissue stretch based on image analysis of preoperative computed tomography angiography (CTA) of carotid atherosclerotic plaques to visualize calcification and soft tissues (lipids and extracellular matrix) within the lesions. Biomechanical stretch was significantly reduced in tissues in close proximity to macro calcification, while increased levels were observed within distant soft tissues. Applying this data to an in vitro stretch model on primary vascular SMCs revealed upregulation of typical markers for differentiated SMCs and contractility under low stretch conditions but also impeded SMC alignment. In contrast, high stretch conditions in combination with calcifying conditions induced SMC apoptosis. Our findings suggest that the load bearing capacities of macro calcifications influence SMC differentiation and survival and contribute to atherosclerotic plaque stabilization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy