SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Mikael C. I.) "

Sökning: WFRF:(Karlsson Mikael C. I.)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blokland, G. A. M., et al. (författare)
  • Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders
  • 2022
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 91:1, s. 102-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. Results: Across disorders, genome-wide significant single nucleotide polymorphism–by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10−8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10−6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10−7; rs73033497, p = 8.8 × 10−7; rs7914279, p = 6.4 × 10−7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels. © 2021 Society of Biological Psychiatry
  •  
2.
  •  
3.
  • Baptista, Marisa A. P., et al. (författare)
  • Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8(+) T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFN gamma-producing CD8(+) T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8(+) T cells at the expense of CD4(+) T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8(+) T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells.
  •  
4.
  • Zeng, Chenjie, et al. (författare)
  • Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus
  • 2016
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. Results: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 x 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 x 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 x 10(-4)) identified in the general populations, and rs113824616 (P = 7 x 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. Conclusion: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.
  •  
5.
  • Ascani, Angelo, et al. (författare)
  • The role of B cells in immune cell activation in polycystic ovary syndrome.
  • 2023
  • Ingår i: eLife. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here, we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knockout mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.
  •  
6.
  • He, Fei, et al. (författare)
  • FPR2 Shapes an Immune-Excluded Pancreatic Tumor Microenvironment and Drives T-cell Exhaustion in a Sex-Dependent Manner
  • 2023
  • Ingår i: Cancer Research. - : American Association for Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 83:10, s. 1628-1645
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex-driven immune differences can affect tumor progression and the landscape of the tumor microenvironment. Deeper understanding of these differences in males and females can inform patient selection to improve sex-optimized immunotherapy treatments. In this study, single-cell RNA sequencing and protein analyses uncovered a subpopulation of myeloid cells in pancreatic lesions associated with an immune-excluded tumor phenotype and effector T-cell exhaustion exclusively in females. This myeloid subpopulation was positively correlated with poor survival and genetic signatures of M2-like macrophages and T-cell exhaustion in females. The G-protein coupled receptor formyl peptide receptor 2 (FPR2) mediated these immunosuppressive effects. In vitro, treatment of myeloid cells with a specific FPR2 antagonist prevented exhaustion and enhanced cytotoxicity of effector cells. Proteomic analysis revealed high expression of immunosuppressive secretory proteins PGE2 and galectin-9, enriched integrin pathway, and reduced proinflammatory signals like TNFα and IFNγ in female M2-like macrophages upon FPR2 agonist treatment. In addition, myeloid cells treated with FPR2 agonists induced TIM3 and PD-1 expression only in female T cells. Treatment with anti-TIM3 antibodies reversed T-cell exhaustion and stimulated their ability to infiltrate and kill pancreatic spheroids. In vivo, progression of syngeneic pancreatic tumors was significantly suppressed in FPR2 knockout (KO) female mice compared with wild-type (WT) female mice and to WT and FPR2 KO male mice. In female mice, inoculation of tumors with FPR2 KO macrophages significantly reduced tumor growth compared with WT macrophages. Overall, this study identified an immunosuppressive function of FPR2 in females, highlighting a potential sex-specific precision immunotherapy strategy.
  •  
7.
  • Hughes, T., et al. (författare)
  • Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder
  • 2018
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ankyrin-3 (ANK3) is one of the few genes that have been consistently identified as associated with bipolar disorder by multiple genome-wide association studies. However, the exact molecular basis of the association remains unknown. A rare loss-of-function splice-site SNP (rs41283526*G) in a minor isoform of ANK3 (incorporating exon ENSE00001786716) was recently identified as protective of bipolar disorder and schizophrenia. This suggests that an elevated expression of this isoform may be involved in the etiology of the disorders. In this study, we used novel approaches and data sets to test this hypothesis. First, we strengthen the statistical evidence supporting the allelic association by replicating the protective effect of the minor allele of rs41283526 in three additional large independent samples (meta-analysis pvalues: 6.8E-05 for bipolar disorder and 8.2E-04 for schizophrenia). Second, we confirm the hypothesis that both bipolar and schizophrenia patients have a significantly higher expression of this isoform than controls (p-values: 3.3E-05 for schizophrenia and 9.8E-04 for bipolar type I). Third, we determine the transcription start site for this minor isoform by Pacific Biosciences sequencing of full-length cDNA and show that it is primarily expressed in the corpus callosum. Finally, we combine genotype and expression data from a large Norwegian sample of psychiatric patients and controls, and show that the risk alleles in ANK3 identified by bipolar disorder GWAS are located near the transcription start site of this isoform and are significantly associated with its elevated expression. Together, these results point to the likely molecular mechanism underlying ANK3's association with bipolar disorder.
  •  
8.
  • Akula, Murali K, et al. (författare)
  • Protein prenylation restrains innate immunity by inhibiting Rac1 effector interactions
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rho family proteins are prenylated by geranylgeranyltransferase type I (GGTase-I), which normally target proteins to membranes for GTP-loading. However, conditional deletion of GGIase-I in mouse macrophages increases GTP-loading of Rho proteins, leading to enhanced inflammatory responses and severe rheumatoid arthritis. Here we show that heterozygous deletion of the Rho family gene Rac1, but not Rhoa and Cdc42, reverses inflammation and arthritis in GGTase-I-deficient mice. Non-prenylated Rac1 has a high affinity for the adaptor protein Ras GTPase-activating-like protein 1 (Iqgap1), which facilitates both GTP exchange and ubiquitination-mediated degradation of Rac1. Consistently, inactivating lagapl normalizes Rac1 GTP-loading, and reduces inflammation and arthritis in GGTase-I-deficient mice, as well as prevents statins from increasing Rac1 GTP-loading and cytokine production in macrophages. We conclude that blocking prenylation stimulates Rac1 effector interactions and unleashes proinflammatory signaling. Our results thus suggest that prenylation normally restrains innate immune responses by preventing Rac1 effector interactions.
  •  
9.
  • Chen, Yunying, et al. (författare)
  • A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses.
  • 2010
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 40:5, s. 1451-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognition of microbial components by TLR, key sensors of infection, leads to induction of inflammatory responses. We found that, in vivo, TLR4 engagement by LPS induces up-regulation of the class A scavenger receptors (SR) macrophage receptor with a collagenous structure (MARCO) and SR-A, which occurs, at least in the case of MARCO, via both MyD88-dependent and -independent pathways. When challenging mice with a low dose of LPS followed by a high dose, class A SR-deficient mice showed a higher survival rate than WT mice. This was paired with increased production of IL-10 and anti-LPS Ab, as well as increased activation status of marginal zone B cells. However, the receptors were not crucial for survival when challenging mice i.p. with Neisseria meningitidis or Listeria monocytogenes, but they were found to contribute to microbial capture and clearance. This indicates physiological significance for the up-regulation of class A SR during early stages of bacterial infection. Thus, we believe that we have revealed a mechanism where SR regulate the activation status of the immune system and are involved in balancing a proper immune response to infection. This regulation could also be important in maintaining tolerance since these receptors have been shown to be involved in regulation of self-reactivity.
  •  
10.
  • Evren, Elza, et al. (författare)
  • Distinct developmental pathways from blood monocytes generate human lung macrophage diversity
  • 2021
  • Ingår i: Immunity. - : Elsevier. - 1074-7613 .- 1097-4180. ; 51, s. 35-35
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.
  •  
11.
  • Georgoudaki, Anna-Maria, et al. (författare)
  • Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis
  • 2016
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 15:9, s. 2000-2011
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME). Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming-TAM-populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, Fc gamma RIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.
  •  
12.
  • Hjelm, Fredrik, et al. (författare)
  • A novel B cell-mediated transport of IgE-immune complexes to the follicle of the spleen.
  • 2008
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 180:10, s. 6604-6610
  • Tidskriftsartikel (refereegranskat)abstract
    • Ag administered i.v. to mice along with specific IgE or IgG2a induces higher Ab- and CD4(+) T cell responses than Ag administered alone. The IgE effect is completely dependent on the low-affinity receptor for IgE, CD23, whereas the IgG2a effect depends on activating FcgammaRs. In vitro studies suggest that IgE/Ag is presented more efficiently than Ag alone to CD4(+) T cells by CD23(+) B cells and that IgG2a/Ag is presented by FcgammaR(+) dendritic cells (DCs). In this study, we investigate in vivo the early events leading to IgE- and IgG2a-mediated enhancement of immune responses. OVA administered i.v. in PBS in combination with specific IgE binds circulating B cells after 5 min and is found in B cell follicles bound to follicular B cells (CD23(high)) after 30 min. This novel B cell-dependent route of entry is specific for IgE because IgG2a-Ag complexes were trapped in the marginal zone. OVA-specific CD4(+) T cells were found at the T-B border in the T cell zones 12 h after immunization both with IgE/OVA or IgG2a/OVA and proliferated vigorously after 3 days. The findings suggest that IgE- and IgG2a-immune complexes are efficient stimulators of early CD4(+) T cell responses and that Ag bound to IgE has a specific route for transportation into follicles.
  •  
13.
  • Hässler, Signe, et al. (författare)
  • Aire deficient mice develop hematopoetic irregularities and marginal zone B cell lymphoma
  • 2006
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 108:6, s. 1941-1948
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type I (APS I) is an inherited recessive disorder with a progressive immunological destruction of many tissues including the adrenal cortex, the parathyroid glands, and the gonads. APS I is caused by mutations in the AIRE gene (autoimmune regulator), expressed in cells of the thymus and spleen, suggesting a role in central and peripheral tolerance. Aire(-/-) mice replicate the autoimmune features of APS I patients with the presence of multiple autoantibodies and lymphocytic infiltrates in various tissues, but young mice appear clinically healthy. We here report the investigation of 15- to 24-month-old Aire(-/-) mice. We did not observe any endocrinological abnormalities, nor did sera from these mice recognize known APS I autoantigens. Interestingly, however, there was a high frequency of marginal zone B-cell lymphoma in Aire(-/-) mice and liver infiltrates of B cells, suggesting chronic antigen exposure and exaggerated activation. Furthermore, increased numbers of monocytes in blood were identified as well as augmented numbers of metallophilic macrophages in the spleen. We propose that Aire, in addition to its function in the thymus, also has a peripheral regulatory role by controlling the development of antigen-presenting cells (APCs) and marginal zone B-cell activation.
  •  
14.
  • Ingelshed, Katrine, et al. (författare)
  • The MDM2 Inhibitor Navtemadlin Arrests Mouse Melanoma Growth In Vivo and Potentiates Radiotherapy
  • 2022
  • Ingår i: Cancer Research Communications. - : American Association For Cancer Research (AACR). - 2767-9764. ; 2:9, s. 1075-1088
  • Tidskriftsartikel (refereegranskat)abstract
    • The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53–MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein–protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry–based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo.Significance:The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.
  •  
15.
  •  
16.
  • La Fleur, Linnea, et al. (författare)
  • Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer
  • 2018
  • Ingår i: International Journal of Cancer. - : WILEY. - 0020-7136 .- 1097-0215. ; 143:7, s. 1741-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-associated macrophages (TAMs) are attractive targets for immunotherapy. Recently, studies in animal models showed that treatment with an anti-TAM antibody directed against the scavenger receptor MARCO resulted in suppression of tumor growth and metastatic dissemination. Here we investigated the expression of MARCO in relation to other macrophage markers and immune pathways in a non-small cell lung cancer (NSCLC) cohort (n=352). MARCO, CD68, CD163, MSR1 and programmed death ligand-1 (PD-L1) were analyzed by immunohistochemistry and immunofluorescence, and associations to other immune cells and regulatory pathways were studied in a subset of cases (n=199) with available RNA-seq data. We observed a large variation in macrophage density between cases and a strong correlation between CD68 and CD163, suggesting that the majority of TAMs present in NSCLC exhibit a protumor phenotype. Correlation to clinical data only showed a weak trend toward worse survival for patients with high macrophage infiltration. Interestingly, MARCO was expressed on a distinct subpopulation of TAMs, which tended to aggregate in close proximity to tumor cell nests. On the transcriptomic level, we found a positive association between MARCO gene expression and general immune response pathways including strong links to immunosuppressive TAMs, T-cell infiltration and immune checkpoint molecules. Indeed, a higher macrophage infiltration was seen in tumors expressing PD-L1, and macrophages residing within tumor cell nests co-expressed MARCO and PD-L1. Thus, MARCO is a potential new immune target for anti-TAM treatment in a subset of NSCLC patients, possibly in combination with available immune checkpoint inhibitors.
  •  
17.
  • La Fleur, Linnea, et al. (författare)
  • Targeting MARCO and IL-37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function
  • 2021
  • Ingår i: Cancer Research. - : American Association For Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 81:4, s. 956-967
  • Tidskriftsartikel (refereegranskat)abstract
    • The progression and metastatic capacity of solid tumors are strongly influenced by immune cells in the tumor microenvironment. In non-small cell lung cancer (NSCLC), accumulation of anti-inflammatory tumor-associated macrophages (TAMs) is associated with worse clinical outcome and resistance to therapy. Here we investigated the immune landscape of NSCLC in the presence of pro-tumoral TAMs expressing the macrophage receptor with collagenous structure (MARCO). MARCO-expressing TAM numbers correlated with increased occurrence of regulatory T cells and effector T cells and decreased Natural Killer (NK) cells in these tumors. Furthermore, transcriptomic data from the tumors uncovered a correlation between MARCO expression and the anti-inflammatory cytokine IL-37. In vitro studies subsequently showed that lung cancer cells polarized macrophages to express MARCO and gain an immune-suppressive phenotype through the release of IL-37. MARCO-expressing TAMs blocked cytotoxic T cell and NK cell activation, inhibiting their proliferation, cytokine production, and tumor killing capacity. Mechanistically, MARCO+ macrophages enhanced regulatory T (Treg) cell proliferation and IL-10 production and diminished CD8 T cell activities. Targeting MARCO or IL-37 receptor (IL-37R) by antibody or CRISPR knockout of IL-37 in lung cancer cell lines repolarized TAMs, resulting in recovered cytolytic activity and anti-tumoral capacity of NK cells and T cells and down-modulated Treg cell activities. In summary, our data demonstrate a novel immune therapeutic approach targeting human TAMs immune suppression of NK and T cell anti-tumor activities.
  •  
18.
  • Lindh, Emma, et al. (författare)
  • Autoimmunity and cystatin SA1 deficiency behind chronic mucocutaneous candidiasis in autoimmune polyendocrine syndrome type 1
  • 2013
  • Ingår i: Journal of Autoimmunity. - : Elsevier BV. - 0896-8411 .- 1095-9157. ; 42, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with the monogenic disease autoimmune polyendocrine syndrome type I (APSI) develop autoimmunity against multiple endocrine organs and suffer from chronic mucocutaneous candidiasis (CMC), a paradoxical complication with an unknown mechanism. We report here that saliva from APSI patients with CMC is defective in inhibiting growth of Candida albicans in vitro and show reduced levels of a salivary protein identified as cystatin SA1. In contrast, APSI patients without CMC express salivary cystatin SA1 and can inhibit C. albicans to the same extent as healthy controls. We evaluated the anti-fungal activity of cystatin SA1 and found that synthesized full length cystatin SA1 efficiently inhibits growth of C. albicans in vitro. Moreover, APSI patients exhibit salivary IgA autoantibodies recognizing myosin-9, a protein expressed in the salivary glands, thus linking autoimmunity to cystatin SA1 deficiency and CMC. This data suggests an autoimmune mechanism behind CMC in APSI and provides rationale for evaluating cystatin SA1 in antifungal therapy.
  •  
19.
  • Lloyd, Katy A., et al. (författare)
  • Differential ACPA Binding to Nuclear Antigens Reveals a PAD-Independent Pathway and a Distinct Subset of Acetylation Cross-Reactive Autoantibodies in Rheumatoid Arthritis
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatoid arthritis (RA) associated anti-citrullinated protein autoantibodies (ACPA) target a wide range of modified proteins. Citrullination occurs during physiological processes such as apoptosis, yet little is known about the interaction of ACPA with nuclear antigens or apoptotic cells. Since uncleared apoptotic cells and neutrophil extracellular trap (NET) products have been postulated to be central sources of autoantigen and immunostimulation in autoimmune disease, we sought to characterize the anti-nuclear and anti-neutrophil reactivities of ACFA. Serology showed that a subset of anti-CCP2 seropositive RA patients had high reactivity to full-length citrullinated histones. In contrast, seronegative RA patients displayed elevated IgG reactivity to native histone compared to controls, but no citrulline-specific reactivity. Screening of 10 single B-cell derived monoclonal AGFA from RA patients revealed that four ACPA exhibited strong binding to apoptotic cells and three of these had anti-nuclear (ANA) autoantibody reactivity. Modified histones were confirmed to be the primary targets of this anti-nuclear ACPA subset following immunoprecipitation from apoptotic cell lysates. Monoclonal ACPA were also screened for reactivities against stimulated murine and human neutrophils, and all the nuclear-reactive monoclonal ACPA bound to NETs. Intriguingly, one ACPA mAb displayed a contrasting cytoplasmic perinuclear neutrophil binding and may represent a different NET-reactive ACPA subset. Notably, studies of CRISPR-Cas9 PAD4 KO cells and cells from PAD KO mice showed that the cytoplasmic NET-binding was fully dependent on PAD4, whilst nuclear- and histone-mediated NEI reactivity was largely PAD-independent. Our further analysis revealed that the nuclear binding could be explained by consensus-motif driven ACPA cross-reactivity to acetylated histones. Specific acetylated histone peptides targeted by the monoclonal antibodies were identified and the anti-modified protein autoantibody (AMPA) profile of the ACPA was found to correlate with the functional activity of the antibodies. In conclusion, when investigating monoclonal ACPA, we could group ACPA into distinct subsets based on their nuclear binding-patterns and acetylation-mediated binding to apoptotic cells, neutrophils, and NETs. Differential anti-modified protein reactivities of RA-autoantibody subsets could have an important functional impact and provide insights in RA pathogenesis.
  •  
20.
  • Lundgren, Sebastian, et al. (författare)
  • The clinical importance of tumour-infiltrating macrophages and dendritic cells in periampullary adenocarcinoma differs by morphological subtype
  • 2017
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dendritic cells (DC) and tumour-associated macrophages (TAM) are essential in linking the innate and adaptive immune response against tumour cells and tumour progression. These cells are also potential target for immunotherapy as well as providing a handle to investigate immune status in the tumour microenvironment. The aim of the present study was to examine their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, with particular reference to morphological subtype. Methods: The density of tolerogenic immature CD1a+ dendritic cells (DC), and MARCO+, CD68+ and CD163+ tissue-associated macrophages (TAM) was analysed by immunohistochemistry in tissue micro arrays with tumours from 175 consecutive cases of periampullary adenocarcinoma who had undergone pancreaticoduodenectomy, 110 with pancreatobiliary type (PB-type) and 65 with intestinal type (I-type) morphology. Kaplan-Meier and Cox regression analyses were applied to determine the impact of immune cell infiltration on 5-year overall survival (OS). Results: High density of CD1a+ DCs was an independent prognostic factor for a reduced OS in PB-type but not in I-type tumours (adjusted HR = 2.35; 95% CI 1.13-4.87). High density of CD68+ and CD163+ TAM was significantly associated with poor OS in the whole cohort, however only in unadjusted analysis (HR = 1.67; 95% CI 1.06-2.63, and HR = 1.84; 95% CI 1.09-3.09, respectively) and not in strata according to morphological subtype. High density of MARCO+ macrophages was significantly associated with poor prognosis in I-type but not in PB-type tumours (HR = 2.14 95% CI 1.03-4.44), and this association was only evident in patients treated with adjuvant chemotherapy. The prognostic value of the other investigated immune cells did not differ significantly in strata according to adjuvant chemotherapy. Conclusions: The results from this study demonstrate that high infiltration of tolerogenic immature DCs independently predicts a shorter survival in patients with PB-type periampullary adenocarcinoma, and that high density of the MARCO+ subtype of TAMs predicts a shorter survival in patients with I-type tumours. These results emphasise the importance of taking morphological subtype into account in biomarker studies related to periampullary cancer, and indicate that therapies targeting dendritic cells may be of value in the treatment of PB-type tumours, which are associated with the worst prognosis.
  •  
21.
  • Mattsson, Johan, et al. (författare)
  • Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant.
  • 2011
  • Ingår i: Journal of immunology (Baltimore, Md. : 1950). - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 187:7, s. 3641-52
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2(-/-) mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2(-/-) mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development.
  •  
22.
  • Parodis, Ioannis, 1981-, et al. (författare)
  • B Cell Tolerance and Targeted Therapies in SLE
  • 2023
  • Ingår i: Journal of Clinical Medicine. - : MDPI. - 2077-0383. ; 12:19
  • Forskningsöversikt (refereegranskat)abstract
    • Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
  •  
23.
  • Sarhan, Dhifaf, et al. (författare)
  • Antibody targeting of tumor associated macrophages in lung cancer remodel the tumor microenvironment and revives immune targeting of tumor cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Immunotherapy for cancer has revolutionized clinical practice and enabled cures for previously lethal cancers. However, the clinical responses are variable and highly influenced by immune regulatory compartments in the tumor microenvironment. This is especially true for immune-excluded tumors, where clinical trials aiming to recover T cell anti-tumor activity have been disappointing. Thus, in NSCLC and other cancers there is a clinical need for additional and combinatory treatments. We have previously shown that antibodies targeting scavenger receptors expressed on tumor-associated macrophages (TAMs), reduces tumor growth and impair metastasis in murine cancer models. Here we investigated targeting of the scavenger receptor MARCO on human TAMs in NSCLC. We found that expression of this receptor in the tumor correlated with immune-exclusion phenotype. Also, we found that lung cancer cell lines converted healthy myeloid cells towards TAM like cells with high expression of MARCO. These human MARCO+ myeloid cells stopped cytotoxic T cells and natural killer (NK) cells from killing tumors and inhibited their overall activity. We then generated anti-human MARCO antibodies and found that these could repolarize TAMs leading to augmented cytolytic ability of NK cells and T cells to kill tumor cells and recovered their proliferation and IFNγ production capacity. Overall, our data demonstrate that it is feasible to use antibodies to alter human TAM immune suppression of NK and T cell anti-tumor activities.
  •  
24.
  • Sarhan, Dhifaf, et al. (författare)
  • Targeting myeloid suppressive cells revives cytotoxic anti-tumor responses in pancreatic cancer
  • 2022
  • Ingår i: ISCIENCE. - : Elsevier BV. - 2589-0042. ; 25:11, s. 105317-
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunotherapy for cancer that aims to promote T cell anti-tumor activity has changed current clinical practice, where some previously lethal cancers have now become treatable. However, clinical trials with low response rates have been disappointing for pancreatic ductal adenocarcinoma (PDAC). One suggested explanation is the accumulation of dominantly immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells in the tumor microenvironment (TME). Using retrospectively collected tumor specimens and transcriptomic data from PDAC, we demonstrate that expression of the scavenger receptor MARCO correlates with poor prognosis and a lymphocyte-excluding tumor phenotype. PDAC cell lines produce IL-10 and induce high expression of MARCO in myeloid cells, and this was further enhanced during hypoxic conditions. These myeloid cells suppressed effector T and natural killer (NK) cells and blocked NK cell tumor infiltration and tumor killing in a PDAC 3D-spheroid model. Anti-human MARCO (anti-hMARCO) antibody targeting triggered the repolarization of tumor-associated macrophages and activated the inflammasome machinery, resulting in IL-18 production. This in turn enhanced T cell and NK cell functions. The targeting of MARCO thus remodels the TME and represents a rational approach to make immunotherapy more efficient in PDAC patients.
  •  
25.
  • Song, J., et al. (författare)
  • Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder
  • 2016
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:9, s. 1290-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is the mainstay prophylactic treatment for bipolar disorder (BD), but treatment response varies considerably across individuals. Patients who respond well to lithium treatment might represent a relatively homogeneous subtype of this genetically and phenotypically diverse disorder. Here, we performed genome-wide association studies (GWAS) to identify (i) specific genetic variations influencing lithium response and (ii) genetic variants associated with risk for lithium-responsive BD. Patients with BD and controls were recruited from Sweden and the United Kingdom. GWAS were performed on 2698 patients with subjectively defined (self-reported) lithium response and 1176 patients with objectively defined (clinically documented) lithium response. We next conducted GWAS comparing lithium responders with healthy controls (1639 subjective responders and 8899 controls; 323 objective responders and 6684 controls). Meta-analyses of Swedish and UK results revealed no significant associations with lithium response within the bipolar subjects. However, when comparing lithium-responsive patients with controls, two imputed markers attained genome-wide significant associations, among which one was validated in confirmatory genotyping (rs116323614, P = 2.74 x 10(-8)). It is an intronic single-nucleotide polymorphism (SNP) on chromosome 2q31.2 in the gene SEC14 and spectrin domains 1 (SESTD1), which encodes a protein involved in regulation of phospholipids. Phospholipids have been strongly implicated as lithium treatment targets. Furthermore, we estimated the proportion of variance for lithium-responsive BD explained by common variants ('SNP heritability') as 0.25 and 0.29 using two definitions of lithium response. Our results revealed a genetic variant in SESTD1 associated with risk for lithium-responsive BD, suggesting that the understanding of BD etiology could be furthered by focusing on this subtype of BD.
  •  
26.
  • Torstensson, Sara, et al. (författare)
  • Androgens Modulate the Immune Profile in a Mouse Model of Polycystic Ovary Syndrome
  • 2024
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycystic ovary syndrome (PCOS) is associated with a low-grade inflammation, but it is unknown how hyperandrogenism, the hallmark of PCOS, affects the immune system. Using a PCOS-like mouse model, it is demonstrated that hyperandrogenism affects immune cell populations in reproductive, metabolic, and immunological tissues differently in a site-specific manner. Co-treatment with an androgen receptor antagonist prevents most of these alterations, demonstrating that these effects are mediated through androgen receptor activation. Dihydrotestosterone (DHT)-exposed mice displayed a drastically reduced eosinophil population in the uterus and visceral adipose tissue (VAT). A higher frequency of natural killer (NK) cells and elevated levels of IFN-γ and TNF-α are seen in uteri of androgen-exposed mice, while NK cells in VAT and spleen displayed a higher expression level of CD69, a marker of activation or tissue residency. Distinct alterations of macrophages in the uterus, ovaries, and VAT are also found in DHT-exposed mice and can potentially be linked to PCOS-like traits of the model. Indeed, androgen-exposed mice are insulin-resistant, albeit unaltered fat mass. Collectively, it is demonstrated that hyperandrogenism causes tissue-specific alterations of immune cells in reproductive organs and VAT, which can have considerable implications on tissue function and contribute to the reduced fertility and metabolic comorbidities associated with PCOS.
  •  
27.
  • Tripathi, Prabhanshu, et al. (författare)
  • Innate and adaptive stimulation of murine diverse NKT cells result in distinct cellular responses.
  • 2019
  • Ingår i: European journal of immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 49:3, s. 443-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα-chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll-like receptor (TLR) ligand activation of TCR-transgenic murine dNKT cells. IFN-γ production by dNKT cells required dendritic cells (DC), cell-to-cell contact and presence of TLR ligands. TLR-stimulated DC activated dNKT cells to secrete IFN-γ in a CD1d-, CD80/86- and type I IFN-independent manner. In contrast, a requirement for IL-12p40, and a TLR ligand-selective dependence on IL-18 or IL-15 was observed. TLR ligand/DC stimulation provoked early secretion of pro-inflammatory cytokines by both CD62L+ and CD62L- dNKT cells. However, proliferation was limited. In contrast, TCR/co-receptor-mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L- dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co-receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.
  •  
28.
  • van Hooren, Luuk, et al. (författare)
  • Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma.
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.
  •  
29.
  • Wermeling, Fredrik, et al. (författare)
  • Invariant NKT cells limit activation of autoreactive CD1d-positive B cells.
  • 2010
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 207:5, s. 943-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Faulty activation of autoreactive B cells is a hallmark of autoimmune diseases like systemic lupus erythematosus (SLE). An important feature restricting activation of autoreactive B cells is efficient removal of apoptotic material. Mounting evidence also connects a primary defect in invariant natural killer T (iNKT) cells to autoimmune disease development. However, exactly how this unconventional T cell subset is involved remains to be defined. Here, we identify a suppressive role for iNKT cells in a model where autoantibody production is triggered by an increased load of circulating apoptotic cells, resembling the situation in SLE patients. Absence or reduction of iNKT cells as well as absence of CD1d-expression on B cells, needed for direct iNKT-B cell interaction, leads to increased autoreactive B cell activation and symptoms of disease. The suppression mediated by the iNKT cells is observed before B cell entry into germinal centers and can be rescued by transferring iNKT cells to deficient mice. This links iNKT cells to handling of dying cells and identifies a novel peripheral tolerance checkpoint relevant for autoimmune disease. Thus, these observations connect two clinical observations in SLE patients previously considered to be unrelated and define a new target for immunotherapy.
  •  
30.
  • Wilhelmson, Anna S K, et al. (författare)
  • Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells.
  • 2018
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636. ; 38:7, s. 1519-1527
  • Tidskriftsartikel (refereegranskat)abstract
    • Androgen deprivation therapy has been associated with increased cardiovascular risk in men. Experimental studies support that testosterone protects against atherosclerosis, but the target cell remains unclear. T cells are important modulators of atherosclerosis, and deficiency of testosterone or its receptor, the AR (androgen receptor), induces a prominent increase in thymus size. Here, we tested the hypothesis that atherosclerosis induced by testosterone deficiency in male mice is T-cell dependent. Further, given the important role of the thymic epithelium for T-cell homeostasis and development, we hypothesized that depletion of the AR in thymic epithelial cells will result in increased atherosclerosis.Prepubertal castration of male atherosclerosis-prone apoE-/- mice increased atherosclerotic lesion area. Depletion of T cells using an anti-CD (cluster of differentiation) 3 antibody abolished castration-induced atherogenesis, demonstrating a role of T cells. Male mice with depletion of the AR specifically in epithelial cells (E-ARKO [epithelial cell-specific AR knockout] mice) showed increased thymus weight, comparable with that of castrated mice. E-ARKO mice on an apoE-/- background displayed significantly increased atherosclerosis and increased infiltration of T cells in the vascular adventitia, supporting a T-cell-driven mechanism. Consistent with a role of the thymus, E-ARKO apoE-/- males subjected to prepubertal thymectomy showed no atherosclerosis phenotype.We show that atherogenesis induced by testosterone/AR deficiency is thymus- and T-cell dependent in male mice and that the thymic epithelial cell is a likely target cell for the antiatherogenic actions of testosterone. These insights may pave the way for new therapeutic strategies for safer endocrine treatment of prostate cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy