SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kastemar Marianne) "

Sökning: WFRF:(Kastemar Marianne)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Caglayan, Demet, et al. (författare)
  • Induction of Glioblastoma Multiforme and Gliomatosis Cerebri with a Sleeping Beauty gene transfer system, implications for T regulatory cell involvement during glioma formation.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Glioblastoma Multiforme (GBM), the most malignant and common  neoplasm of the central nervous system (CNS), has been classified into subgroups with gene-expression profile as the basis for categorization. Among these the mesenchymal subgroup is most greatly associated with inflammatory infiltrates and increased expression of inflammatory associated genes. GBMs exhibit T cell infiltration to a varying degree and today the degree of infiltration is not used in prognostics. The Sleeping Beauty (SB) system was used to introduce AKT, a mutant variant of NRAS and a shp53 coupled to green fluorescent protein (GFP) into mice that are fully immunocomptetent, lack mature T cells or have reduced regulatory T (Treg) cell function respectively. We report, for the first time, the induction of Gliomatosis Cerebri with the SB system. Tumors that originated were either GBM or Gliomatosis Cerebri with a similar incidence. There was no difference in survival, grade or incidence of induced tumors in wild type mice and mice that lack mature T cells.
  •  
3.
  • Caglayan, Demet, et al. (författare)
  • Sox21 inhibits glioma progression in vivo by forming complexes with Sox2 and stimulating aberrant differentiation
  • 2013
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 133:6, s. 1345-1356
  • Tidskriftsartikel (refereegranskat)abstract
    • Sox2 is a transcription factor in neural stem cells and keeps the cells immature and proliferative. Sox2 is expressed in primary human glioma such as glioblastoma multiforme (GBM), primary glioma cells and glioma cell lines and is implicated in signaling pathways in glioma connected to malignancy. Sox21, the counteracting partner of Sox2, has the same expression pattern as Sox2 in glioma but in general induces opposite effects. In this study, Sox21 was overexpressed by using a tetracycline-regulated expression system (tet-on) in glioma cells. The glioma cells were injected subcutaneously into immunodeficient mice. The control tumors were highly proliferative, contained microvascular proliferation and large necrotic areas typical of human GBM. Induction of Sox21 in the tumor cells resulted in a significant smaller tumor size, and the effect correlated with the onset of treatment, where earlier treatment gave smaller tumors. Mice injected with glioma cells orthotopically into the brain survived significantly longer when Sox21 expression was induced. Tumors originating from glioma cells with an induced expression of Sox21 exhibited an increased formation of Sox2:Sox21 complexes and an upregulation of S100, CNPase and Tuj1. Sox21 appears to decrease the stem-like cell properties of the tumor cells and initiate aberrant differentiation of glioma cells in vivo. Taken together our results indicate that Sox21 can function as a tumor suppressor during gliomagenesis mediated by a shift in the balance between Sox2 and Sox21. The wide distribution of Sox2 and Sox21 in GBM makes the Sox2/Sox21 axis a very interesting target for novel therapy of gliomas. What's new? Glioma formation is driven by brain tumor-initiating cells with stem cell-like properties. Here the authors show for the first time that the transcription factor Sox21 can act as a suppressor gene in gliomagenesis. Induced expression of Sox21 in human glioma cells results in reduced tumor growth and prolonged survival of xenotranplanted mice. Sox21 reduces the stem-cell like properties of the tumor cells, leading to abnormal differentiation, induced apoptosis, and decreased proliferation. The results point to a shift in balance between the counteracting and widely distributed Sox2 and Sox21, revealing the Sox2/Sox21 axis as a target for novel therapy of gliomas.
  •  
4.
  • Caglayan, Demet, et al. (författare)
  • Sox21 inhibits glioma progression in vivo by reducing Sox2 and stimulating aberrant differentiation
  • 2013
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 133:6, s. 1345-1356
  • Tidskriftsartikel (refereegranskat)abstract
    • Sox2 is a transcription factor in neural stem cells and keeps the cells immature and proliferative. Sox2 is expressed in primary human glioma such as glioblastoma multiforme (GBM), primary glioma cells and glioma cell lines and is implicated in signaling pathways in glioma connected to malignancy. Sox21, the counteracting partner of Sox2, has the same expression pattern as Sox2 in glioma but in general induces opposite effects. In this study, Sox21 was overexpressed by using a tetracycline-regulated expression system (tet-on) in glioma cells. The glioma cells were injected subcutaneously into immunodeficient mice. The control tumors were highly proliferative, contained microvascular proliferation and large necrotic areas typical of human GBM. Induction of Sox21 in the tumor cells resulted in a significant smaller tumor size, and the effect correlated with the onset of treatment, where earlier treatment gave smaller tumors. Mice injected with glioma cells orthotopically into the brain survived significantly longer when Sox21 expression was induced. Tumors originating from glioma cells with an induced expression of Sox21 exhibited an increased formation of Sox2:Sox21 complexes and an upregulation of S100β, CNPase and Tuj1. Sox21 appears to decrease the stem-like cell properties of the tumor cells and initiate aberrant differentiation of glioma cells in vivo. Taken together our results indicate that Sox21 can function as a tumor suppressor during gliomagenesis mediated by a shift in the balance between Sox2 and Sox21. The wide distribution of Sox2 and Sox21 in GBM makes the Sox2/Sox21 axis a very interesting target for novel therapy of gliomas.
  •  
5.
  • Ferletta, Maria, 1973-, et al. (författare)
  • Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells
  • 2011
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 129:1, s. 45-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies support a role for Sox2 to keep stem cells and progenitor cells in an immature and proliferative state. Coexpression of Sox2 and GFAP has been found in regions of the adult brain where neural stem cells are present and in human glioma cells. In our study, we have investigated the roles of Sox2 and its counteracting partner Sox21 in human glioma cells. We show for the first time that Sox21 is expressed in both primary glioblastoma and in human glioma cell lines. We found that coexpression of Sox2, GFAP and Sox21 was mutually exclusive with expression of fibronectin. Our result suggests that glioma consists of at least two different cell populations: Sox2+/GFAP+/Sox21+/FN- and Sox2-/GFAP-/Sox21-/FN1+. Reduction of Sox2 expression by using siRNA against Sox2 or by overexpressing Sox21 using a tetracyclineregulated expression system (Tet-on) caused decreased GFAP expression and a reduction in cell number due to induction of apoptosis. We suggest that Sox21 can negatively regulate Sox2 in glioma. Our findings imply that Sox2 and Sox21 may be interesting targets for the development of novel glioma therapy.
  •  
6.
  •  
7.
  • Hägerstrand, Daniel, et al. (författare)
  • Characterization of an imatinib-sensitive subset of high-grade human glioma cultures
  • 2006
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 25:35, s. 4913-4922
  • Tidskriftsartikel (refereegranskat)abstract
    • High-grade gliomas, including glioblastomas, are malignant brain tumors for which improved treatment is urgently needed. Genetic studies have demonstrated the existence of biologically distinct subsets. Preliminary studies have indicated that platelet-derived growth factor (PDGF) receptor signaling contributes to the growth of some of these tumors. In this study, human high-grade glioma primary cultures were analysed for sensitivity to treatment with the PDGF receptor inhibitor imatinib/Glivec/Gleevec/STI571. Six out of 15 cultures displayed more than 40% growth inhibition after imatinib treatment, whereas seven cultures showed less than 20% growth inhibition. In the sensitive cultures, apoptosis contributed to growth inhibition. Platelet-derived growth factor receptor status correlated with imatinib sensitivity. Supervised analyses of gene expression profiles and real-time PCR analyses identified expression of the chemokine CXCL12/SDF-1 (stromal cell-derived factor 1) as a predictor of imatinib sensitivity. Exogenous addition of CXCL12 to imatinib-insensitive cultures conferred some imatinib sensitivity. Finally, coregulation of CXCL12 and PDGF alpha-receptor was observed in glioblastoma biopsies. We have thus defined the characteristics of a novel imatinib-sensitive subset of glioma cultures, and provided evidence for a functional relationship between imatinib sensitivity and chemokine signaling. These findings will assist in the design and evaluation of clinical trials exploring therapeutic effects of imatinib on malignant brain tumors.
  •  
8.
  •  
9.
  • Kärrlander, Maria, et al. (författare)
  • Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma
  • 2009
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:12, s. e8536-
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG), a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B), in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma).  
  •  
10.
  • Lindberg, Nanna, et al. (författare)
  • Differential roles of p16Ink4a and p19Arf in suppressing gliomagenesis from oligodendrocyte progenitor cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Version:1.0 StartHTML:0000000226 EndHTML:0000029504 StartFragment:0000002830 EndFragment:0000029468 SourceURL:file://localhost/Users/nannalindberg/Ctva%20tumor%20suppressors/Manuskript/MS%20Ctva%20knockar%20091013NL.doc CDKN2a encodes the tumor suppressor proteins p16INK4a and p14ARF (p19Arf in mouse) whose functions are frequently lost in human glioblastoma. From previous studies using the RCAS/TV-Atv-a mouse model we have shown that p16Ink4a and p19Arf individually and combined couldan suppress glioma development in Nestin expressing cells (in Ntv-a mice) and in Gfap expressing cells (in Gtv-a mice) (Uhrbom, Dai et al. 2002; Uhrbom, Kastemar et al. 2005; Tchougounova, Kastemar et al. 2007). Recently, we showed that oligodendrocyte progenitor cells (OPCs) could act as cell of origin for glioma by making a Ctv-a mouse in which CNPase expressing cells couldan be targeted by retroviral infection (Lindberg, Kastemar et al. 2009). Here In the current study we have investigated the roles of p16Ink4a and p19Arf in tumor development from OPCs. Unexpectedly, we found that p19Arf only only could suppress oncogene induced gliomagenesis. Loss of Arf caused significantly increased incidence and malignancy of PDGF-B induced tumors and decreased survival compared to Ctv-a wt mice. In addition, Arf deficiency facilitated K-RAS+AKT induced glioma development. Loss of Ink4a, however, lead to nocould not enable tumor induction by (K-RAS++AKT and caused a slight decrease in (PDGF-B) induced tumor incidence. Similarly, wWhen inducing tumors in adult Ctv-a mice we found that Arf loss but not Ink4a loss  enabled tumor induction. Taken together, our data suggest that p19Arf but not p16Ink4a is a tumor suppressor in OPCs of both newborn and adult mice.
  •  
11.
  • Lindberg, Nanna, 1982-, et al. (författare)
  • Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma
  • 2009
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 28:23, s. 2266-2275
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas are primary brain tumors mainly affecting adults. The cellular origin is unknown. The recent identification of tumor-initiating cells in glioma, which share many similarities with normal neural stem cells, has suggested the cell of origin to be a transformed neural stem cell. In previous studies, using the RCAS/tv-a mouse model, platelet-derived growth factor B (PDGF-B)-induced gliomas have been generated from nestin or glial fibrillary acidic protein-expressing cells, markers of neural stem cells. To investigate if committed glial progenitor cells could be the cell of origin for glioma, we generated the Ctv-a mouse where tumor induction would be restricted to myelinating oligodendrocyte progenitor cells (OPCs) expressing 2',3'-cyclic nucleotide 3'-phosphodiesterase. We showed that PDGF-B transfer to OPCs could induce gliomas with an incidence of 33%. The majority of tumors resembled human WHO grade II oligodendroglioma based on close similarities in histopathology and expression of cellular markers. Thus, with the Ctv-a mouse we have showed that the cell of origin for glioma may be a committed glial progenitor cell.
  •  
12.
  • Lindberg, Nanna, et al. (författare)
  • Oncogenic Signaling Is Dominant to Cell of Origin and Dictates Astrocytic or Oligodendroglial Tumor Development from Oligodendrocyte Precursor Cells
  • 2014
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 34:44, s. 14644-14651
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cells, believed to be the cellular origin of glioma, are able to generate gliomas, according to experimental studies. Here we investigated the potential and circumstances of more differentiated cells to generate glioma development. We and others have shown that oligodendrocyte precursor cells (OPCs) can also be the cell of origin for experimental oligodendroglial tumors. However, the question of whether OPCs have the capacity to initiate astrocytic gliomas remains unanswered. Astrocytic and oligodendroglial tumors represent the two most common groups of glioma and have been considered as distinct disease groups with putatively different origins. Here we show that mouse OPCs can give rise to both types of glioma given the right circumstances. We analyzed tumors induced by K-RAS and AKT and compared them to oligodendroglial platelet-derived growth factor B-induced tumors in Ctv-a mice with targeted deletions of Cdkn2a (p16(Ink4a-/-), p19(Arf-/-), Cdkn2a(-/-)). Our results showed that glioma can originate from OPCs through overexpression of K-RAS and AKT when combined with p19(Arf) loss, and these tumors displayed an astrocytic histology and high expression of astrocytic markers. We argue that OPC shave the potential to develop both astrocytic and oligodendroglial tumors given loss of p19(Arf), and that oncogenic signaling is dominant to cell of origin in determining glioma phenotype. Our mouse data are supported by the fact that human astrocytoma and oligodendroglioma display a high degree of overlap in global gene expression with no clear distinctions between the two diagnoses.
  •  
13.
  •  
14.
  • Põlajeva, Jelena, et al. (författare)
  • Mast Cell Accumulation in Glioblastoma with a Potential Role for Stem Cell Factor and Chemokine CXCL12
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is the most common and malignant form of glioma with high mortality and no cure. Many human cancers maintain a complex inflammatory program triggering rapid recruitment of inflammatory cells, including mast cells (MCs), to the tumor site. However, the potential contribution of MCs in glioma has not been addressed previously. Here we report for the first time that MCs infiltrate KRas+Akt-induced gliomas, using the RCAS/TV-a system, where KRas and Akt are transduced by RCAS into the brains of neonatal Gtv-a- or Ntv-a transgenic mice lacking Ink4a or Arf. The most abundant MC infiltration was observed in high-grade gliomas of Arf-/- mice. MC accumulation could be localized to the vicinity of glioma-associated vessels but also within the tumor mass. Importantly, proliferating MCs were detected, suggesting that the MC accumulation was caused by local expansion of the MC population. In line with these findings, strong expression of stem cell factor (SCF), i.e. the main MC growth factor, was detected, in particular around tumor blood vessels. Further, glioma cells expressed the MC chemotaxin CXCL12 and MCs expressed the corresponding receptor, i.e. CXCR4, suggesting that MCs could be attracted to the tumor through the CXCL12/CXCR4 axis. Supporting a role for MCs in glioma, strong MC infiltration was detected in human glioma, where GBMs contained significantly higher MC numbers than grade II tumors did. Moreover, human GBMs were positive for CXCL12 and the infiltrating MCs were positive for CXCR4. In conclusion, we provide the first evidence for a role for MCs in glioma.
  •  
15.
  •  
16.
  • Segerman, Anna, et al. (författare)
  • Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition
  • 2016
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 17:11, s. 2994-3009
  • Tidskriftsartikel (refereegranskat)abstract
    • Intratumoral heterogeneity is a hallmark of glioblastoma multiforme and thought to negatively affect treatment efficacy. Here, we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability among clones, including a range of responses to radiation and drugs. This widespread variability was observed as a continuumof multitherapy resistance phenotypes linked to a proneural-mesenchymal shift in the transcriptome. Multitherapy resistance was associated with a semi-stable cell state that was characterized by an altered DNA methylation pattern at promoter regions of mesenchymal master regulators and enhancers. The gradient of cell states within the GIC compartment constitutes a distinct form of heterogeneity. Our findings may open an avenue toward the development of new therapeutic rationales designed to reverse resistant cell states.
  •  
17.
  • Swartling, Fredrik J., et al. (författare)
  • Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines
  • 2009
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 28:35, s. 3121-3131
  • Tidskriftsartikel (refereegranskat)abstract
    • Earlier we used a glioma model to identify loci in the mouse genome, which were repeatedly targeted by platelet-derived growth factor (PDGF)-containing Moloney murine leukemia viruses. The gene Prkg2, encoding cyclic guanosine monophosphate (cGMP)-dependent protein kinase II, cGKII, was tagged by retroviral insertions in two brain tumors. The insertions were both situated upstream of the kinase domain and suggested creating a truncated form of the cGKII protein. We transfected different human glioma cell lines with Prkg2 and found an overall reduction in colony formation and cell proliferation compared with controls transfected with truncated Prkg2 (lacking the kinase domain) or empty vector. All glioma cells transfected with the cGKII phosphorylate vasodilator-stimulated phosphoprotein, VASP, after cGMP analog treatment. Glioma cell lines positive for the Sox9 transcription factor showed reduced Sox9 expression when Prkg2 was stably transfected. When cGKII was activated by cGMP analog treatment, Sox9 was phosphorylated, Sox9 protein expression was suppressed and the glioma cell lines displayed loss of cell adhesion, inhibition of Akt phosphorylation and G1 arrest. Sox9 repression by siRNA was similarly shown to reduce glioma cell proliferation. Expression analysis of stem and glial lineage cell markers also suggests that cGKII induces differentiation of glioma cell lines. These findings describe an anti-proliferative role of cGKII in human glioma biology and would further explain the retroviral tagging of the cGKII gene during brain tumor formation in PDGF-induced tumors.
  •  
18.
  • Tchougounova, Elena, et al. (författare)
  • Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma
  • 2007
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 26:43, s. 6289-6296
  • Tidskriftsartikel (refereegranskat)abstract
    • In a subset of gliomas, the platelet-derived growth factor (PDGF) signaling pathway is perturbed. This is usually an early event occurring in low-grade tumors. In high-grade gliomas, the subsequent loss of the INK4a-ARF locus is one of the most common mutations. Here, we dissected the separate roles of Ink4a and Arf in PDGFB-induced oligodendroglioma development in mice. We found that there were differential functions of the two tumor suppressor genes. In tumors induced from astrocytes, both Ink4a-loss and Arf-loss caused a significantly increased incidence compared to wild-type mice. In tumors induced from glial progenitor cells there was a slight increase in tumor incidence in Ink4a-/- mice and Ink4a-Arf-/- mice compared to wild-type mice. In both progenitor cells and astrocytes, Arf-loss caused a pronounced increase in tumor malignancy compared to Ink4a-loss. Hence, Ink4a-loss contributed to tumor initiation from astrocytes and Arf-loss caused tumor progression from both glial progenitor cells and astrocytes. Results from in vitro studies on primary brain cell cultures suggested that the PDGFB-induced activation of the mitogen-activated protein kinase pathway via extracellular signal-regulated kinase was involved in the initiation of low-grade oligodendrogliomas and that the additional loss of Arf may contribute to tumor progression through increased levels of cyclin D1 and a phosphoinositide 3-kinase-dependent activation of p70 ribosomal S6 kinase causing a strong proliferative response of tumor cells.
  •  
19.
  • Tchougounova, Elena, et al. (författare)
  • Sox5 can suppress platelet-derived growth factor B-induced glioma development in Ink4a-deficient mice through induction of acute cellular senescence
  • 2009
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 28:12, s. 1537-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • SOX5 is a member of the high-mobility group superfamily of architectural non-histone proteins involved in gene regulation and maintenance of chromatin structure in a wide variety of developmental processes. Sox5 was identified as a brain tumor locus in a retroviral insertional mutagenesis screen of platelet-derived growth factor B (PDGFB)-induced mouse gliomas. Here we have investigated the role of Sox5 in PDGFB-induced gliomagenesis in mice. We show that Sox5 can suppress PDGFB-induced glioma development predominantly upon Ink4a-loss. In human glioma cell lines and tissues, we found very low levels of SOX5 compared with normal brain. Overexpression of Sox5 in human glioma cells led to a reduction in clone formation and inhibition of proliferation. Combined expression of Sox5 and PDGFB in primary brain cell cultures caused decreased proliferation and an increased number of senescent cells in the Ink4a-/- cells only. Protein analyses showed a reduction in the amount and activation of Akt and increased levels of p27(Kip1) upon Sox5 expression that was dominant to PDGFB signaling and specific to Ink4a-/- cells. Upon inhibition of p27(Kip1), the effects of Sox5 on proliferation and senescence could be reversed. Our data suggest a novel pathway, where Sox5 may suppress the oncogenic effects of PDGFB signaling during glioma development by regulating p27(Kip1) in a p19(Arf)-dependent manner, leading to acute cellular senescence.
  •  
20.
  •  
21.
  •  
22.
  • Xie, Yuan, et al. (författare)
  • The Human Glioblastoma Cell Culture Resource : Validated Cell Models Representing All Molecular Subtypes
  • 2015
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 2:10, s. 1351-1363
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called gliomastem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional sub-types. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22
Typ av publikation
tidskriftsartikel (15)
annan publikation (7)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Kastemar, Marianne (22)
Westermark, Bengt (15)
Uhrbom, Lene (14)
Jiang, Yiwen (7)
Caglayan, Demet (5)
Ferletta, Maria (5)
visa fler...
Alafuzoff, Irina (4)
Hesselager, Göran (4)
Tchougounova, Elena (4)
Holland, Eric C. (3)
Bergström, Tobias (3)
Hermansson, Annika (3)
Lundin, Erika (3)
Niklasson, Mia (3)
Segerman, Anna (3)
Nelander, Sven (2)
Sreedharan, Smitha (2)
Smits, Anja (2)
Forsberg-Nilsson, Ka ... (2)
Sundström, Magnus (1)
Larsson, Rolf (1)
Gustafsson, Mats (1)
Johansson, Fredrik (1)
Tengholm, Anders (1)
Pejler, Gunnar (1)
Fryknäs, Mårten (1)
Isaksson, Anders (1)
Olsson, Anna-Karin (1)
Waern, Ida (1)
Libard, Sylwia (1)
Östman, Arne (1)
Heldin, Carl-Henrik, ... (1)
Rolny, Charlotte (1)
Berglund, Malin (1)
Jarvius, Malin (1)
Asplund, Anna (1)
Nister, Monica (1)
Marinescu, Voichita ... (1)
Elfineh, Lioudmila (1)
Johansson, Patrik (1)
Baskaran, Sathishkum ... (1)
Boije, Maria (1)
Sobocki, Caroline (1)
Swartling, Fredrik J ... (1)
Swartling, Fredrik (1)
Olofsson, T (1)
Segerman, Bo (1)
Moriarity, Branden (1)
Tschida, Barbara Rya ... (1)
Largaespada, David (1)
visa färre...
Lärosäte
Uppsala universitet (22)
Gymnastik- och idrottshögskolan (3)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (21)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy