SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaushal Sujay S.) "

Sökning: WFRF:(Kaushal Sujay S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Van Vliet, Michelle T. H., et al. (författare)
  • Global river water quality under climate change and hydroclimatic extremes
  • 2023
  • Ingår i: Nature Reviews Earth & Environment. - 2662-138X. ; 4, s. 687-702
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change and extreme weather events (such as droughts, heatwaves, rainstorms and floods) pose serious challenges for water management, in terms of both water resources availability and water quality. However, the responses and mechanisms of river water quality under more frequent and intense hydroclimatic extremes are not well understood. In this Review, we assess the impacts of hydroclimatic extremes and multidecadal climate change on a wide range of water quality constituents to identify the key responses and driving mechanisms. Comparison of 965 case studies indicates that river water quality generally deteriorates under droughts and heatwaves (68% of compiled cases), rainstorms and floods (51%) and under long-term climate change (56%). Also improvements or mixed responses are reported owing to counteracting mechanisms, for example, increased pollutant mobilization versus dilution during flood events. River water quality responses under multidecadal climate change are driven by hydrological alterations, rises in water and soil temperatures and interactions among hydroclimatic, land use and human drivers. These complex interactions synergistically influence the sources, transport and transformation of all water quality constituents. Future research must target tools, techniques and models that support the design of robust water quality management strategies, in a world that is facing more frequent and severe hydroclimatic extremes.
  •  
2.
  • Wolfe, Alexander P., et al. (författare)
  • Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes
  • 2013
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 1872-6828 .- 0012-8252. ; 116, s. 17-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratigraphic boundaries are ideally defined by distinct lithological, geochemical, and palaeobiological signatures, to which a chronological framework can be applied. We present a range of observations that illustrate how the Holocene-Anthropocene transition meets these criteria in its expression in sediments from remote arctic and alpine lakes, removed from direct, catchment-scale, anthropogenic influences. In glaciated lake basins, the retreat of glaciers commonly leads to lithological successions from proglacial clastic sedimentation to non-glacial organic deposition. Sediments from the majority of lakes record marked depletions in the nitrogen stable isotopic composition of sediment organic matter, reflecting anthropogenic influences on the global nitrogen cycle. In all cases, siliceous microfossil assemblages (diatoms and chrysophytes) change markedly and directionally, with regional nuances. These stratigraphic fingerprints begin to appear in the sediment record after AD 1850, but accelerate in pulses between AD 1950 and 1970 and again after AD 1980. Our review indicates that recent environmental changes associated with humankind's dominance of key global biogeochemical cycles are sufficiently pervasive to be imprinted on the sediment record of remote lakes. Moreover, these changes are of sufficient magnitude to conclude that the Holocene has effectively ended, and that the concept of Anthropocene more aptly describes current planetary dynamics. The synthesis of these observations pertains directly to ongoing discussions concerning the eventual formalization of a new stratigraphic boundary. (c) 2012 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy