SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kazakov Ye. O.) "

Sökning: WFRF:(Kazakov Ye. O.)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bilato, A., et al. (författare)
  • Impact of ICRF fast-ions on core turbulence and MHD activity in ASDEX upgrade
  • 2023
  • Ingår i: 24th Topical Conference On Radio-Frequency Power In Plasmas. - : AIP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Experiments in various tokamaks and their analysis identify the fast ions (FI) generated by NBI and/or ICRF heating as one of the main causes of the observed improvement in core confinement: fast ions can reduce core microturbulence (mainly Ion-Temperature-Gradient (ITG) driven modes) either electrostatically or electromagnetically, or they can resonate with fishbones and high-frequency Alfvén modes, which in turn contribute in stabilizing ITG. In this perspective, we discuss recent experiments done on ASDEX Upgrade (AUG) where ICRF is the main actuator for FI generation for energies above 100 keV. Additionally, ICRF-FIs can substantially impact the MHD activity and its consequent effects on fast ion losses (FILs) and ion-cyclotron emission (ICE). We present dedicated AUG experiments with NBI-D further accelerated by ICRF.
  •  
3.
  • Kazakov, Ye.O., et al. (författare)
  • Effect of plasma shaping and resonance location on minority ion temperature anisotropy in tokamak plasmas heated with ICRH
  • 2012
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 401:1, s. 012011-
  • Tidskriftsartikel (refereegranskat)abstract
    • Poloidal asymmetries of the impurity distribution, which are observed in tokamaks, may influence the impurity cross-field transport. Low field side ion cyclotron resonance heating (ICRH) often results in an inboard accumulation of impurities, which may in turn lead to an outward convective impurity flux. The temperature anisotropy of the ICRH-heated minority ions is identified to be one of the main parameters governing the impurity asymmetry strength. In the present work we analyze the effect of plasma shaping and the ICRH resonance location on the minority temperature anisotropy by means of the TORIC-SSFPQL modelling. We find that ellipticity reduces the anisotropy level due to the wave defocussing and broader absorption regions for the elongated plasmas. The temperature anisotropy decrease in case of the resonance layers located closer to the edge is caused by the significant reduction in heating power densities due to geometrical reasons.
  •  
4.
  • Kazakov, Ye O., et al. (författare)
  • Poloidal asymmetries due to ion cyclotron resonance heating
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:10, s. 105010-
  • Tidskriftsartikel (refereegranskat)abstract
    • The poloidal density asymmetry of impurity ions in ion cyclotron resonance heated (ICRH) discharges is calculated. The link between the asymmetry strength and ICRH and plasma parameters is quantified. The main parameter governing the asymmetry strength is identified to be the minority ion temperature anisotropy. Through numerical simulations with the full-wave TORIC code coupled to the Fokker-Planck quasilinear solver SSFPQL, the dependence of the anisotropy on various parameters, such as ICRH power, background density and temperature, minority and impurity concentration and toroidal wavenumber has been investigated. An approximate expression for the poloidal asymmetry of impurities as a function of plasma parameters, resonance location and ICRH power is given. A quantification of the link of the impurity asymmetry and ICRH heating is valuable not only for understanding the changes in the cross-field transport but also for the possibilities to use the asymmetry measurements as diagnostics.
  •  
5.
  •  
6.
  • Schmidt, B. S., et al. (författare)
  • 4D and 5D phase-space tomography using slowing-down physics regularization
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 63:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We compute reconstructions of 4D and 5D fast-ion phase-space distribution functions in fusion plasmas from synthetic projections of these functions. The fast-ion phase-space distribution functions originating from neutral beam injection (NBI) at TCV and Wendelstein 7-X (W7-X) at full, half, and one-third injection energies can be distinguished and particle densities of each component inferred based on 20 synthetic spectra of projected velocities at TCV and 680 at W7-X. Further, we demonstrate that an expansion into a basis of slowing-down distribution functions is equivalent to regularization using slowing-down physics as prior information. Using this technique in a Tikhonov formulation, we infer the particle density fractions for each NBI energy for each NBI beam from synthetic measurements, resulting in six unknowns at TCV and 24 unknowns at W7-X. Additionally, we show that installing 40 LOS in each of 17 ports at W7-X, providing full beam coverage and almost full angle coverage, produces the highest quality reconstructions.
  •  
7.
  • Järleblad, H., et al. (författare)
  • Fast-ion orbit sensitivity of neutron and gamma-ray diagnostics for one-step fusion reactions
  • 2022
  • Ingår i: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 62:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast ions in the MeV-range can be diagnosed by neutron emission spectroscopy (NES) and gamma-ray spectroscopy (GRS). In this work, we present orbit weight functions for one-step fusion reactions, using NES and GRS diagnostics on perpendicular and oblique lines-of-sight (LOS) at Joint European Torus (JET) as examples. The orbit weight functions allow us to express the sensitivities of the diagnostics in terms of fast-ion (FI) orbits and can be used to swiftly reproduce synthetic signals that have been computed by established codes. For diagnostically relevant neutron energies for the D(D, n)He-3 reaction, the orbit sensitivities of the NES diagnostics follow a predictable pattern. As the neutron energy of interest increases, the pattern shifts upwards in FI energy. For the GRS diagnostic and the T(p,gamma)He-4 reaction, the orbit sensitivity is shown to be qualitatively different for red-shifted, blue-shifted and nominal gamma birth energies. Finally, we demonstrate how orbit weight functions can be used to decompose diagnostic signals into the contributions from different orbit types. For a TRANSP simulation of the JET discharge (a three-ion ICRF scenario) considered in this work, the NES signals for both the perpendicular and oblique LOS are shown to originate mostly from co-passing orbits. In addition, a significant fraction of the NES signal for the oblique LOS is shown to originate from stagnation orbits.
  •  
8.
  •  
9.
  • Kazakov, Ye O., et al. (författare)
  • Physics and applications of three-ion ICRF scenarios for fusion research
  • 2021
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 28:2
  • Forskningsöversikt (refereegranskat)abstract
    • This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
  •  
10.
  • Kazakov, Ye. O., et al. (författare)
  • Plasma heating and generation of energetic D ions with the 3-ion ICRF + NBI scenario in mixed H-D plasmas at JET-ILW
  • 2020
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 60:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Dedicated experiments were conducted in mixed H-D plasmas in JET to demonstrate the efficiency of the 3-ion ICRF scenario for plasma heating, relying on injected fast NBI ions as the resonant ion component. Strong core localization of the RF power deposition in the close vicinity of the ion-ion hybrid layer was achieved, resulting in an efficient plasma heating, generation of energetic D ions, strong enhancement of the neutron rate and observation of Alfvenic modes. A consistent physical picture that emerged from a range of fast-ion measurements at JET, including neutron and gamma-ray measurements, a high-energy neutral particle analyzer and MHD mode localization analysis, is presented. The possibility to moderate the fast-ion energies with the ratioP(ICRF)/P(NBI)and the choice of the NBI injectors is demonstrated. An outlook of possible applications of the 3-ion scenarios, including a recent example of its use in mixed D-He-3 plasmas in JET and promising scenarios for D-T plasmas, are presented.
  •  
11.
  • Kazakov, Ye O., et al. (författare)
  • Progress with applications of three-ion ICRF scenarios for fusion research: A review
  • 2023
  • Ingår i: 24th Topical Conference On Radio-Frequency Power In Plasmas. - : AIP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The viability of magnetic confinement fusion as an energy source depends on achieving the high ion temperatures required for D-T fusion. Among the available techniques, plasma heating with waves in the ion cyclotron range of frequencies (ICRF) is a prominent method for bulk ion heating in fusion plasmas. Furthermore, a detailed understanding of the non-linear physics of alpha heating and the complex impact of MeV-range fast ions on plasma dynamics becomes progressively more important. This paper provides a comprehensive overview of recent developments with the three-ion ICRF scenarios on Alcator C-Mod, ASDEX Upgrade and JET tokamaks. The results demonstrate the flexibility of these novel scenarios for heating bulk ions in D-T ≈ 50%-50% plasmas and efficient generation of MeV-range fast ions in multi-ion species plasmas. Several key results relevant for ITER and future fusion reactors are highlighted.
  •  
12.
  • Kiptily, V. G., et al. (författare)
  • Excitation of Alfven eigenmodes by fusion-born alpha-particles in D-He-3 plasmas on JET
  • 2022
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing Ltd. - 0741-3335 .- 1361-6587. ; 64:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfven eigenmode (AE) instabilities driven by alpha-particles have been observed in D-He-3 fusion experiments on the Joint European Torus (JET) with the ITER-like wall. For the efficient generation of fusion alpha-particles from D-He-3 fusion reaction, the three-ion radio frequency scenario was used to accelerate the neutral beam injection 100 keV deuterons to higher energies in the core of mixed D-He-3 plasmas at high concentrations of He-3. A large variety of fast-ion driven magnetohydrodynamic modes were observed, including the elliptical Alfven eigenmodes (EAEs) with mode numbers n = -1 and axisymmetric modes with n = 0 in the frequency range of EAEs. The simultaneous observation of these modes indicates the presence of rather strong alpha-particle population in the plasma with a 'bump-on-tail' shaped velocity distribution. Linear stability analysis and Fokker-Planck calculations support the observations. Experimental evidence of the AEs excitation by fusion-born alpha-particles in the D-He-3 plasma is provided by neutron and gamma-ray diagnostics as well as fast-ion loss measurements. We discuss an experimental proposal for the planned full-scale D-T plasma experiments on JET based on the physics insights gained from these experiments.
  •  
13.
  • Kovtun, Yu.V., et al. (författare)
  • ICRF plasma production in gas mixtures in the Uragan-2M stellarator
  • 2023
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 194
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper summarizes previous results and presents new studies on the ICRF plasma creation both in pure gases and gas mixtures. In all the experiments, the two-strap antenna was operated in monopole phasing with applied RF power of ∼100 kW. The research for plasma creation was carried out at RF frequencies near the fundamental hydrogen cyclotron harmonic.
  •  
14.
  • Lozin, A.V., et al. (författare)
  • Two-strap rf antenna in uragan-2m stellarator
  • 2020
  • Ingår i: Problems of Atomic Science and Technology. - : Problems of Atomic Science and Technology. ; 130:6, s. 10-14
  • Tidskriftsartikel (refereegranskat)
  •  
15.
  • Moiseyenko, Volodymyr, et al. (författare)
  • First experiments on ICRF discharge generation by a W7-X-like antenna in the Uragan-2M stellarator
  • 2020
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press (CUP). - 0022-3778 .- 1469-7807. ; 86:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In support of the ICRF experiments planned on the Wendelstein 7-X (W7-X) stellarator, i.e. fast ion generation, wall conditioning, target plasma production and heating, a first experimental study on plasma production has been made in the Uragan-2M (U-2M) stellarator using W7-X-like two-strap antenna. In all the experiments, antenna monopole phasing was used. The W7-X-like antenna operation with launched radiofrequency power of ~100 kW have been performed in helium (p = (4–14) × 10−2 Pa) with the vacuum vessel walls pre-loaded with hydrogen. Production of plasma with a density higher than 1012 cm−3 was observed near the first harmonic of the hydrogen cyclotron frequency. Operation at first hydrogen harmonic is feasible in W7-X future ICRF experiments.
  •  
16.
  • Moiseyenko, Volodymyr, et al. (författare)
  • FUSION RESEARCH IN STELLARATOR DEPARTMENT OF IPP NSC KIPT
  • 2022
  • Ingår i: PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. - : Problems of Atomic Science and Technology. - 1562-6016. ; :6, s. 3-8, s. 3-8
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper briefly describes intrinsic and collaborative scientific activities in the Stellarator Department of the Institute of Plasma Physics of the National Science Center "Kharkov Institute of Physics and Technology" in last two years. These activities include experiments on JET tokamak, stellarators Wendelstein 7-X and Uragan-2M, TOMAS toroidal device and theoretical studies related to modeling of radio-frequency fields in plasma and conceptual development of the stellarator-mirror fission-fusion hybrid.
  •  
17.
  • Moiseyenko, Volodymyr, et al. (författare)
  • Plasma Production in ICRF in the Uragan-2M Stellarator in Hydrogen–Helium Gas Mixture
  • 2022
  • Ingår i: Journal of fusion energy. - : Springer. - 0164-0313 .- 1572-9591. ; 41:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma production experiments in helium at Uragan-2M have been performed to investigate the role of the hydrogen minority in helium. The experiments presented here were carried on with a controlled minority hydrogen concentration. The hydrogen minority allowed one to increase plasma density more than three times as compared with pure helium. The obtained plasma density is highest for whole time of Uragan-2M operation. The developed scenario allowed to decrease the neutral gas pressure at which the plasma production is possible. This is a requirement for achieving regimes of plasma production with full ionization. Although the initial gas mixture 14%H2 + 86%He can be treated as optimum, there is no sensitive dependence on hydrogen minority concentration, which makes the scenario robust. This study, together with initial LHD experiments, confirm the prospects of target plasma production by ICRF waves for stellarator type machines.
  •  
18.
  • Nocente, M., et al. (författare)
  • Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D-He-3 plasmas with the 3-ion radio-frequency heating scenario
  • 2020
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 60:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dedicated experiments to generate energetic D ions and D-(3) He fusion-born alpha particles were performed at the Joint European Torus (JET) with the ITER-like wall (ILW). Using the 3-ion D-(D-NBI)-(3) He radio frequency (RF) heating scenario, deuterium ions from neutral beam injection (NBI) were accelerated in the core of mixed D-(3) He plasmas to higher energies with ion cyclotron resonance frequency (ICRF) waves, in turn leading to a core-localized source of alpha particles. The fast-ion distribution of RF-accelerated D-NBI ions was controlled by varying the ICRF and NBI power (P-ICRF approximate to 4-6 MW, P-NBI approximate to 3-20 MW), resulting in rather high D-D neutron (approximate to 1x10(16) s(-1)) and D-(3) He alpha rates (approximate to 2x10(16) s(-1)) at moderate input heating power. Theory and TRANSP analysis shows that large populations of co-passing MeV-range D ions were generated using the D-(D-NBI)-(3) He 3-ion ICRF scenario. This important result is corroborated by several experimental observations, in particular gamma-ray measurements. The developed experimental scenario at JET provides unique conditions for probing several aspects of future burning plasmas, such as the contribution from MeV range ions to global confinement, but without introducing tritium. Dominant fast-ion core electron heating with T-i approximate to T-e and a rich variety of fast-ion driven Alfven eigenmodes (AEs) were observed in these D-(3) He plasmas. The observed AE activities do not have a detrimental effect on the thermal confinement and, in some cases, may be driven by the fusion born alpha particles. A strong continuous increase in neutron rate was observed during long-period sawteeth (>1 s), accompanied by the observation of reversed shear AEs, which implies that a non monotonic q profile was systematically developed in these plasmas, sustained by the large fast-ion populations generated by the 3-ion ICRF scenario.
  •  
19.
  • Sahlberg, Arne, et al. (författare)
  • Spatially resolved measurements of RF accelerated deuterons at JET
  • 2021
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 61:3
  • Tidskriftsartikel (refereegranskat)abstract
    • An understanding of fast (supra-thermal) ion behavior is of great importance in tokamak physics and is a subject studied from both theoretical and experimental perspectives. This paper investigates the spatial energy and density distributions of RF accelerated deuterons using the neutron camera at the tokamak JET. Using the 19 liquid scintillator detectors available in the neutron camera system, we obtain spatial information that cannot be accessed with a single sightline. We present a spectroscopic analysis method in which a spatially resolved model of the fast ion distribution is fitted to the pulse height spectra from all 19 detectors simultaneously. The fast ion distribution is parameterized in such a way that the density, energy, and pitch-angle parts are uncoupled. The energy part is composed of a Maxwellian distribution, characterized by an 'RF tail temperature,' and the spatial dependence is modeled as a two-dimensional Gaussian distribution on the poloidal plane of the tokamak. From this parameterized model, we can calculate the spectrum of fusion born neutrons originating from reactions involving RF accelerated deuterons, and by fitting this model to the measured neutron camera pulse height spectra, we obtain an estimate of the spatially resolved distribution of the fast deuterons. The method has been applied to three JET pulses using different RF heating schemes and is shown to identify several features of the fast ion distribution produced in the various scenarios. Hence, this method is able to provide quantitative information about the fast ion distribution resulting from different heating schemes, and can also be useful, e.g., to validate simulation results from RF modeling codes.
  •  
20.
  • Stancar, Z., et al. (författare)
  • Experimental validation of an integrated modelling approach to neutron emission studies at JET
  • 2021
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 61:12
  • Tidskriftsartikel (refereegranskat)abstract
    • An integrated modelling methodology for the calculation of realistic plasma neutron sources for the JET tokamak has been developed. The computational chain comprises TRANSP plasma transport and DRESS neutron spectrum calculations, and their coupling to the MCNP neutron transport code, bridging plasma physics and neutronics. In the paper we apply the developed methodology to the analysis of neutron emission properties of deuterium and helium plasmas at JET, and validate individual modelling steps against neutron diagnostic measurements. Two types of JET discharges are modelled-baseline-like and three-ion radio-frequency scenarios-due to their diversity in plasma heating, characteristics of the induced fast ion population, and the imprint of these on neutron emission properties. The neutron emission modelling results are quantitatively compared to the total neutron yield from fission chambers, neutron emissivity profiles from the neutron camera, neutron spectra from the time-of-flight spectrometer, and neutron activation measurements. The agreement between measured and calculated quantities is found to be satisfactory for all four diagnostic systems within the estimated experimental and computational uncertainties. Additionally, the effect of neutrons not originating from the dominating D(D, n)He-3 reactions is studied through modelling of triton burnup DT neutrons, and, in mixed D-He-3 plasmas, neutrons produced in the Be-9(D, n gamma)B-10 reaction on impurities. It is found that these reactions can contribute up to several percent to the total neutron yield and dominate the neutron activation of samples. The effect of MeV-range fast ions on the neutron activation of In-115 and Al-27 samples is measured and computationally validated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy