SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kazemzadeh Majid) "

Sökning: WFRF:(Kazemzadeh Majid)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kazemzadeh, Majid, et al. (författare)
  • Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations
  • 2022
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 14:21
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the analysis of abrupt and non-abrupt changes in precipitation has received much attention due to the importance of climate change-related issues (e.g., extreme climate events). In this study, we used a novel segmentation algorithm, DBEST (Detecting Breakpoints and Estimating Segments in Trend), to analyze the greatest changes in precipitation using a monthly pixel-based satellite precipitation dataset (TRMM 3B43) at three different scales: (i) global, (ii) continental, and (iii) climate zone, during the 1998–2019 period. We found significant breakpoints, 14.1%, both in the form of abrupt and non-abrupt changes, in the global scale precipitation at the 0.05 significance level. Most of the abrupt changes were observed near the Equator in the Pacific Ocean and Asian continent, relative to the rest of the globe. Most detected breakpoints occurred during the 1998–1999 and 2009–2011 periods on the global scale. The average precipitation change for the detected breakpoint was ±100 mm, with some regions reaching ±3000 mm. For instance, most portions of northern Africa and Asia experienced major changes of approximately +100 mm. In contrast, most of the South Pacific and South Atlantic Ocean experienced changes of −100 mm during the studied period. Our findings indicated that the larger areas of Africa (23.9%), Asia (22.9%), and Australia (15.4%) experienced significant precipitation breakpoints compared to North America (11.6%), South America (9.3%), Europe (8.3%), and Oceania (9.6%). Furthermore, we found that the majority of detected significant breakpoints occurred in the arid (31.6%) and polar (24.1%) climate zones, while the least significant breakpoints were found for snow-covered (11.5%), equatorial (7.5%), and warm temperate (7.7%) climate zones. Positive breakpoints’ temporal coverage in the arid (54.0%) and equatorial (51.9%) climates were more than those in other climates zones. Here, the findings indicated that large areas of Africa and Asia experienced significant changes in precipitation (−250 to +250 mm). Compared to the average state (trend during a specific period), the greatest changes in precipitation were more abrupt and unpredictable, which might impose a severe threat to the ecology, environment, and natural resources.
  •  
3.
  • Kazemzadeh, Majid, et al. (författare)
  • Four Decades of Air Temperature Data over Iran Reveal Linear and Nonlinear Warming
  • 2022
  • Ingår i: Journal of Meteorological Research. - : Springer Science and Business Media LLC. - 2095-6037 .- 2198-0934. ; 36:3, s. 462-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatiotemporal analysis of long-term changes in air temperature is of prime importance for climate change research and the development of effective mitigation and adaptation strategies. Although there is considerable research on air temperature change across the globe, most of it has been on linear trends and time series analysis of nonlinear trends has not received enough attention. Here, we analyze spatiotemporal patterns of monthly and annual mean (Tmean), maximum (Tmax) and minimum (Tmin) air temperature at 47 synoptic stations across climate zones in Iran for a 40-year time period (1978–2017). We applied a polynomial fitting scheme (Polytrend) to both monthly and annual air temperature data to detect trends and classify them into linear and nonlinear (quadratic and cubic) categories. The highest magnitude of increasing trends were observed in the annual Tmin (0.47 °C per decade) and the lowest magnitude was for the annual Tmax (0.4°C per decade). Across the country, increasing trends (x̄ = 37.2%) had higher spatial coverage than the decreasing trends (x̄ = 3.2%). Warming trends in Tmean (65.3%) and Tmin (73.1%) were mainly observed in humid climate zone while warming trends in Tmax were in semi-arid (43.9%) and arid (34.1%) climates. Linear change with a positive trend was predominant in all Tmean (56.7%), Tmax (67.8%) and Tmin (71.2%) and for both monthly and annual datasets. Further, the linear trends had the highest warming rate in annual Tmin (0.83°C per decade) and Tmean (0.46°C per decade) whereas the nonlinear trends had the highest warming rate in annual Tmax (0.52°C per decade). The linear trend type was predominant in humid climate zones whereas the nonlinear trends (quadratic and cubic) were mainly observed in the arid climate zones.
  •  
4.
  • Kazemzadeh, Majid, et al. (författare)
  • Linear and nonlinear trend analyses in global satellite‐based precipitation, 1998‐2017
  • 2021
  • Ingår i: Earth's Future. - 2328-4277. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation varies spatiotemporally in amount, intensity, and frequency. Although, much research has been conducted on analyzing precipitation patterns and variation at the global scale, trend types have still not received much attention. This study developed a new polynomial‐based model for detecting non‐linear and linear trends in a satellite precipitation product (TRMM 3B43) for the 1998‐2017 period at a near‐global scale. We used an automated trend classification method that detects significant trends and classifies them into linear and non‐linear (cubic, quadratic, and concealed) trend types in satellite‐based precipitation at near‐global, continental, and climate zone scales. We found that 12.3% of pixel‐based precipitation time series across the globe have significant trend at 0.05 significance level (50% positive and 50% negative trends). In all continents except Asia, decreasing trends were found to cover larger areas than corresponding increasing trends. Regarding climate zone and precipitation trend change, our results indicate that a linear trend is dominant in the warm temperate (77.7%) and equatorial climates (80.4%) while the least linear change was detected in the polar climate (68.9%). The combined results of continental and climate zone scales indicate significant increasing trends in Asia and arid climate over the last 20 years. Furthermore, positive trends were found to be more significant at the continental scale, particularly, in Asia relative to the climate zone scale. Linear change in precipitation (80%) was the most dominant trend observed as opposed to non‐linear (quadratic (11%) and cubic (9%)) trend types at the global scale.
  •  
5.
  • Kazemzadeh, Majid, et al. (författare)
  • Natural and anthropogenic forcings lead to contrasting vegetation response in long-term vs. short-term timeframes
  • 2021
  • Ingår i: Journal of Environmental Management. - : Elsevier BV. - 0301-4797. ; 286
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding vegetation response to natural and anthropogenic forcings is vital for managing watersheds as natural ecosystems. We used a novel integrated framework to separate the impacts of natural factors (e.g. drought, precipitation and temperature) from those of anthropogenic factors (e.g. human activity) on vegetation cover change at the watershed scale. We also integrated several datasets including satellite remote sensing and in-situ measurements for a twenty-year time period (2000–2019). Our results show that despite no significant trend being observed in temperature and precipitation, vegetation indices expressed an increasing trend at both the control and treated watersheds. The vegetation cover was not significantly affected by the natural factors whereas the watershed management practice (as a human activity) had significant impacts on vegetation change in the long-term. Further, the vegetation cover long-term response to watershed management practice was mainly linear. We also found that the vegetation indices values in the 2011–2019 period (as the treated period in treated watershed) were significantly higher than those in the 2000–2010 period. In the short-term, however, the drought condition and decreased precipitation (as natural factors) explained the majority of the change in vegetation cover. For example, the majority of the breakpoints occurred in 2008, and it was related to a widespread extreme drought in the area. The watershed management practice as a human activity along with extreme climatic events could explain a large part of the vegetation changes observed in the treated and control watersheds.
  •  
6.
  • Kazemzadeh, Majid, et al. (författare)
  • Soil moisture change analysis under watershed management practice using in situ and remote sensing data in a paired watershed
  • 2021
  • Ingår i: Environmental Monitoring & Assessment. - : Springer Science and Business Media LLC. - 1573-2959 .- 0167-6369. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil moisture, vegetation cover, and land surface temperature are vital variables in water-energy balance, eco-hydrological processes, and water resources management, which can be influenced by watershed management activities. This research focused on the spatial and temporal variability of soil moisture, vegetation cover, land surface temperature, and Temperature-Vegetation Dryness Index (TVDI) under a biological watershed management practice in the Taleghan paired watershed, namely, treated (TW) and control watersheds (CW), in Alborz province, Iran. In this research, along with the remote sensing techniques, the soil moisture and vegetation cover data were measured and statistically analyzed in the three aspects of both TW and CW during a growth period from May to October 2017. The results indicated that soil moisture, vegetation cover, and land surface temperature values in the paired watershed were significantly different at the 0.01 level during the study period. The increased vegetation cover in the TW had an inverse effect on the land surface temperature and TVDI, while directly impacted the soil moisture content. The average TVDI in the CW was 0.83, while this index was found to be 0.69 in the TW. Unlike the vegetation cover and soil moisture, the results revealed that the southern aspects had the highest TVDI and land surface temperature compared to the northern and eastern aspects of both watersheds. However, the increased vegetation cover as a biological watershed management activity in the steep terrain and mountainous areas of TW led to an increased soil moisture and a decreased land surface temperature and soil dryness. As a result, decreasing soil dryness in the TW can exert vital controls on the water resources and increasing water availability. In the arid and semiarid countries such as Iran, a proper watershed management activity can effectively increase soil moisture and water availability in the watersheds. In particular, the vegetation cover protection and biological practices can be considered as practical solutions in the rehabilitation of exhausted watersheds in arid and semiarid environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy