SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keiluweit Marco) "

Sökning: WFRF:(Keiluweit Marco)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harden, Jennifer W., et al. (författare)
  • Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:2, s. e705-e718
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
  •  
2.
  • Li, Hui, et al. (författare)
  • Simple plant and microbial exudates destabilize mineral-Associated organic matter via multiple pathways
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:5, s. 3389-3398
  • Tidskriftsartikel (refereegranskat)abstract
    • Most mineral-Associated organic matter (MAOM) is protected against microbial attack, thereby contributing to longterm carbon storage in soils. However, the extent to which reactive compounds released by plants and microbes may destabilize MAOM and so enhance microbial access, as well as the underlying mechanisms, remain unclear. Here, we tested the ability of functionally distinct model exudates-ligands, reductants, and simple sugars-To promote microbial utilization of monomeric MAOM, bound via outer-sphere complexes to common iron and aluminum (hydr)oxide minerals. The strong ligand oxalic acid induced rapid MAOM mineralization, coinciding with greater sorption to and dissolution of minerals, suggestive of direct MAOM mobilization mechanisms. In contrast, the simple sugar glucose caused slower MAOM mineralization, but stimulated microbial activity and metabolite production, indicating an indirect microbially-mediated mechanism. Catechol, acting as reductant, promoted both mechanisms. While MAOM on ferrihydrite showed the greatest vulnerability to both direct and indirect mechanisms, MAOM on other (hydr)oxides was more susceptible to direct mechanisms. These findings suggest that MAOM persistence, and thus longterm carbon storage within a given soil, is not just a function of mineral reactivity but also depends on the capacity of plant roots and associated microbes to produce reactive compounds capable of triggering specific destabilization mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy