SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keller Ulrich B) "

Sökning: WFRF:(Keller Ulrich B)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
3.
  •  
4.
  •  
5.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  •  
7.
  •  
8.
  • Zaborowski, AM, et al. (författare)
  • Microsatellite instability in young patients with rectal cancer: molecular findings and treatment response
  • 2022
  • Ingår i: The British journal of surgery. - : Oxford University Press (OUP). - 1365-2168 .- 0007-1323. ; 109:3, s. 251-255
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study of 400 patients with early-onset rectal cancer, 12.5 per cent demonstrated microsatellite instability (MSI). MSI was associated with a reduced likelihood of nodal positivity, an increased rate of pathological complete response, and improved disease-specific survival.
  •  
9.
  • Keller, Ulrich B, et al. (författare)
  • Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis.
  • 2007
  • Ingår i: EMBO J. - 0261-4189. ; 26:10, s. 2562-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced levels of the cyclin-dependent kinase inhibitor p27(Kip1) connote poor prognosis in cancer. In human Burkitt lymphoma and in precancerous B cells and lymphomas arising in Emu-Myc transgenic mice, p27(Kip1) expression is markedly reduced. We show that the transcription of the Cks1 component of the SCF(Skp2) complex that is necessary for p27(Kip1) ubiquitylation and degradation is induced by Myc. Further, Cks1 expression is elevated in precancerous Emu-Myc B cells, and high levels of Cks1 are also a hallmark of Emu-Myc lymphoma and of human Burkitt lymphoma. Finally, loss of Cks1 in Emu-Myc B cells elevates p27(Kip1) levels, reduces proliferation and markedly delays lymphoma development and dissemination of disease. Therefore, Myc suppresses p27(Kip1) expression, accelerates cell proliferation and promotes tumorigenesis at least in part through its ability to selectively induce Cks1.
  •  
10.
  • Keller, Ulrich, et al. (författare)
  • Nfkb 1 is dispensable for Myc-induced lymphomagenesis.
  • 2005
  • Ingår i: Oncogene. - 0950-9232. ; 24:41, s. 6231-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Rel/NF-kappaB transcription factors are critical arbiters of immune responses, cell survival, and transformation, and are frequently deregulated in cancer. The p50 NF-kappaB 1 component of Rel/NF-kappaB DNA-binding dimers regulates genes involved in both cell cycle traverse and apoptosis. Nfkb 1 loss accelerates B cell growth and leads to increased B cell turnover in vivo, phenotypes akin to those manifested in B cells of Emu-Myc transgenic mice, a model of human Burkitt lymphoma. Interestingly, Emu-Myc B cells express reduced levels of cytoplasmic and nuclear NF-kappaB 1 and have reduced Rel/NF-kappaB DNA-binding activity, suggesting that Myc-mediated repression of NF-kappaB 1 might mediate its proliferative and apoptotic effects on B cells. Furthermore, Nfkb 1 expression was reduced in the majority of Emu-Myc lymphomas and was also suppressed in human Burkitt lymphoma. Nonetheless, loss of Nfkb 1 did not appreciably affect Myc's proliferative or apoptotic responses in B cells and had no effect on lymphoma development in Emu-Myc mice. Therefore, Nfkb 1 is dispensable for Myc-induced lymphomagenesis.. Oncogene (2005) 24, 6231-6240
  •  
11.
  • Mittler, Eva, et al. (författare)
  • Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:636
  • Tidskriftsartikel (refereegranskat)abstract
    • The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.
  •  
12.
  • Mittler, Eva, et al. (författare)
  • Structural and mechanistic basis of neutralization by a pan-hantavirus protective antibody
  • 2023
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 15:700
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.
  •  
13.
  • Nilsson, Jonas A, et al. (författare)
  • Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation.
  • 2004
  • Ingår i: Mol Cell Biol. - 0270-7306. ; 24:4, s. 1560-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Myc oncoproteins are overexpressed in most cancers and are sufficient to accelerate cell proliferation and provoke transformation. However, in normal cells Myc also triggers apoptosis. All of the effects of Myc require its function as a transcription factor that dimerizes with Max. This complex induces genes containing CACGTG E-boxes, such as Ornithine decarboxylase (Odc), which harbors two of these elements. Here we report that in quiescent cells the Odc E-boxes are occupied by Max and Mnt, a putative Myc antagonist, and that this complex is displaced by Myc-Max complexes in proliferating cells. Knockdown of Mnt expression by stable retroviral RNA interference triggers many targets typical of the "Myc" response and provokes accelerated proliferation and apoptosis. Strikingly, these effects of Mnt knockdown are even manifest in cells lacking c-myc. Moreover, Mnt knockdown is sufficient to transform primary fibroblasts in conjunction with Ras. Therefore, Mnt behaves as a tumor suppressor. These findings support a model where Mnt represses Myc target genes and Myc functions as an oncogene by relieving Mnt-mediated repression.
  •  
14.
  • Nilsson, Jonas A, et al. (författare)
  • Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.
  • 2005
  • Ingår i: Cancer Cell. - 1535-6108. ; 7:5, s. 433-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Checkpoints that control Myc-mediated proliferation and apoptosis are bypassed during tumorigenesis. Genes encoding polyamine biosynthetic enzymes are overexpressed in B cells from E mu-Myc transgenic mice. Here, we report that disabling one of these Myc targets, Ornithine decarboxylase (Odc), abolishes Myc-induced suppression of the Cdk inhibitors p21(Cip1) and p27(Kip1), thereby impairing Myc's proliferative, but not apoptotic, response. Moreover, lymphoma development was markedly delayed in E mu-Myc;Odc(+/-) transgenic mice and in E mu-Myc mice treated with the Odc inhibitor difluoromethylornithine (DFMO). Strikingly, tumors ultimately arising in E mu-Myc;Odc(+/-) transgenics lacked deletions of Arf, suggesting that targeting Odc forces other routes of transformation. Therefore, Odc is a critical Myc transcription target that regulates checkpoints that guard against tumorigenesis and is an effective target for cancer chemoprevention.
  •  
15.
  • Puig-Blasco, Laia, et al. (författare)
  • Loss of cancer cell-derived ADAM15 alters the tumor microenvironment in colorectal tumors
  • 2023
  • Ingår i: International Journal of Cancer. - : WILEY. - 0020-7136 .- 1097-0215. ; 153:12, s. 2068-2081
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy