SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kettunen Petronella) "

Sökning: WFRF:(Kettunen Petronella)

  • Resultat 1-50 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramsson, Alexandra, 1973, et al. (författare)
  • Proteomics Profiling of Single Organs from Individual Adult Zebrafish.
  • 2010
  • Ingår i: Zebrafish. - : Mary Ann Liebert Inc. - 1557-8542 .- 1545-8547. ; 7:2, s. 161-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The model organism zebrafish (Danio rerio) is extensively utilized in studies of developmental biology but is also being investigated in the context of a growing list of human age-related diseases. To facilitate such studies, we here present protein expression patterns of adult zebrafish organs, including blood, brain, fin, heart, intestine, liver, and skeletal muscle. Protein extracts were prepared from the different organs of two zebrafish and analyzed using liquid chromatography coupled to high-resolution tandem mass spectrometry. Zebrafish tissue was digested directly after minimal fractionation and cleaned up (the shotgun approach). Proteins were identified using Mascot software. In total, 1394 proteins were identified of which 644 were nonredundant. Of these, 373 demonstrated an organ-specific expression pattern and 57 had not been shown on protein level before. These data emphasize the need for increased research at the protein level to facilitate the selection of candidate proteins for targeted quantification and to refine systematic genetic network analysis in vertebrate development, biology, and disease.
  •  
2.
  • Abramsson, Alexandra, 1973, et al. (författare)
  • The zebrafish amyloid precursor protein-b is required for motor neuron guidance and synapse formation.
  • 2013
  • Ingår i: Developmental biology. - : Elsevier BV. - 1095-564X .- 0012-1606. ; 381:2, s. 377-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The amyloid precursor protein (APP) is a transmembrane protein mostly recognized for its association with Alzheimer's disease. The physiological function of APP is still not completely understood much because of the redundancy between genes in the APP family. In this study we have used zebrafish to study the physiological function of the zebrafish APP homologue, appb, during development. We show that appb is expressed in post-mitotic neurons in the spinal cord. Knockdown of appb by 50-60% results in a behavioral phenotype with increased spontaneous coiling and prolonged touch-induced activity. The spinal cord motor neurons in these embryos show defective formation and axonal outgrowth patterning. Reduction in Appb also results in patterning defects and changed density of pre- and post-synapses in the neuromuscular junctions. Together, our data show that development of functional locomotion in zebrafish depends on a critical role of Appb in the patterning of motor neurons and neuromuscular junctions.
  •  
3.
  • Agholme, Lotta, et al. (författare)
  • Low-dose γ-secretase inhibition increases secretion of Aβ peptides and intracellular oligomeric Aβ.
  • 2017
  • Ingår i: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 85, s. 211-219
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibitors have been considered promising drug candidates against Alzheimer's disease (AD) due to their ability to reduce amyloid-β (Aβ) production. However, clinical trials have been halted due to lack of clinical efficacy and/or side effects. Recent in vitro studies suggest that low doses of γ-secretase inhibitors may instead increase Aβ production. Using a stem cell-derived human model of cortical neurons and low doses of the γ-secretase inhibitor DAPT, the effects on a variety of Aβ peptides were studied using mass spectrometry. One major focus was to develop a novel method for specific detection of oligomeric Aβ (oAβ), and this was used to study the effects of low-dose γ-secretase inhibitor treatment on intracellular oAβ accumulation. Low-dose treatment (2 and 20nM) with DAPT increased the secretion of several Aβ peptides, especially Aβx-42. Furthermore, using the novel method for oAβ detection, we found that 2nM DAPT treatment of cortical neurons resulted in increased oAβ accumulation. Thus, low dose-treatment with DAPT causes both increased production of long, aggregation-prone Aβ peptides and accumulation of intracellular Aβ oligomers, both believed to contribute to AD pathology.
  •  
4.
  • Andersson, Carl-Henrik, et al. (författare)
  • A Genetic Variant of the Sortilin 1 Gene isAssociated with Reduced Risk ofAlzheimer's Disease
  • 2016
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 53:4, s. 1353-1363
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a neurodegenerative disorder represented by the accumulation of intracellular tau protein and extracellular deposits of amyloid-β (Aβ) in the brain. The gene sortilin 1 (SORT1) has previously been associated with cardiovascular disease in gene association studies. It has also been proposed to be involved in AD pathogenesis through facilitating Aβ clearance by binding apoE/Aβ complexes prior to cellular uptake. However, the neuropathological role of SORT1 in AD is not fully understood. To evaluate the associations between gene variants of SORT1 and risk of AD, we performed genetic analyses in a Swedish case-control cohort. Ten single nucleotide polymorphisms (SNPs), covering the whole SORT1 gene, were selected and genotyped in 620 AD patients and 1107 controls. The SNP rs17646665, located in a non-coding region of the SORT1 gene, remained significantly associated with decreased risk of AD after multiple testing (pc=0.0061). In addition, other SNPs were found to be nominally associated with risk of AD, as well as altered cognitive function and the CSF biomarker Aβ42, but these associations did not survive correction for multiple testing. The fact that SORT1 has been strongly associated with risk of cardiovascular disease is intriguing as cardiovascular disease is also regarded as a risk factor for AD. Finally, increased knowledge about SORT1 function has a potential to increase our understanding of APOE, the strongest risk factor for AD.
  •  
5.
  • Andersson, Marica, et al. (författare)
  • Effects of Holding Density on the Welfare of Zebrafish: A Systematic Review.
  • 2021
  • Ingår i: Zebrafish. - : Mary Ann Liebert Inc. - 1557-8542 .- 1545-8547. ; 18:5, s. 297-306
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebrafish is becoming an increasingly popular research animal around the world. Its welfare is affected by an array of environmental factors, such as food access and water quality. Holding density is an important welfare aspect, not least due to its interaction with other housing conditions. Despite the extensive use of zebrafish in research, little is known of how densities affect its welfare. In this systematic review, we have performed a large literature search, compiled, and evaluated all publications regarding zebrafish holding density. We have analyzed how density effects growth, reproduction, and stress response, including behavior, water quality, and pathogenic outbreaks in young and adult fish. Our review shows that the holding densities tested vary largely depending on the research focus, for example, body growth or behavior. In fact, research indicates that future recommendations on holding density could depend on which welfare aspects are considered. Overall, there is a need for more studies investigating the interactive effects of density on welfare indicators, such as reproduction coupled with stress response. We stress the necessity of including holding density in universal housing guidelines and reporting information on holding conditions of larvae and adults when publishing zebrafish work.
  •  
6.
  • Andersson, Marica, et al. (författare)
  • Low Holding Densities Increase Stress Response and Aggression in Zebrafish
  • 2022
  • Ingår i: Biology. - : MDPI AG. - 2079-7737. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Zebrafish are used as experimental animals in labs all around the world. To ensure that the health of zebrafish is maintained at the highest level, it is important to know the optimal housing conditions of the animals, including the housing density. Guidelines for housing densities of zebrafish can then be spread and followed globally, making it possible to compare research data from different facilities. To investigate the optimal housing densities of zebrafish and to better understand how holding density affects zebrafish behaviour and physiology, we evaluated the welfare of zebrafish housed at different densities for nine weeks. We observed that fish housed at the lowest holding density of 1 fish/L stood out from the rest of the experimental fish, showing higher levels of aggression, secreting more of the stress hormone cortisol in the water, and spending more time in the top zone of the tank, possibly reflecting the fact that fish in this density were hiding more behind the floating plants. Our data indicate that zebrafish should not be kept at 1 fish/L, or lower, to ensure good welfare of the animals. With laboratory zebrafish (Danio rerio) being an established and popular research model, there is a need for universal, research-based husbandry guidelines for this species, since guidelines can help promote good welfare through providing appropriate care. Despite the widespread use of zebrafish in research, it remains unclear how holding densities affect their welfare. Previous studies have mainly evaluated the effects of holding densities on a single parameter, such as growth, reproductive output, or social interactions, rather than looking at multiple welfare parameters simultaneously. Here we investigated how chronic (nine weeks) exposure to five different holding densities (1, 4, 8, 12, and 16 fish/L) affected multiple welfare indicators. We found that fish in the 1 fish/L density treatment had higher free water cortisol concentrations per fish, increased vertical distribution, and displayed aggressive behaviour more frequently than fish held at higher densities. On the other hand, density treatments had no effect on anxiety behaviour, whole-brain neurotransmitter levels, egg volume, or the proportion of fertilised eggs. Our results demonstrate that zebrafish can be held at densities between 4 and 16 fish/L without compromising their welfare. However, housing zebrafish in the density of 1 fish/L increased their stress level and aggressive behaviour.
  •  
7.
  • Axelsson, Elin, et al. (författare)
  • Diagnostic Performance of Cerebrospinal Fluid Neurofilament Light Chain and Soluble Amyloid-β Protein Precursor β in the Subcortical Small Vessel Type of Dementia.
  • 2023
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 96:4, s. 1515-1528
  • Tidskriftsartikel (refereegranskat)abstract
    • The subcortical small vessel type of dementia (SSVD) is a common subtype of vascular dementia, but there is a lack of disease-specific cerebrospinal fluid (CSF) biomarkers.We investigated whether CSF concentrations of neurofilament light chain (NFL), soluble amyloid-β protein precursor α (sAβPPα), sAβPPβ, and CSF/serum albumin ratio could separate SSVD from healthy controls, Alzheimer's disease (AD), and mixed dementia (combined AD and SSVD).This was a mono-center study of patients with SSVD (n=38), AD (n=121), mixed dementia (n=62), and controls (n=96). The CSF biomarkers were measured using immunoassays, and their independent contribution to the separation between groups were evaluated using the Wald test. Then, the area under the receiver operating characteristics curve (AUROC) and 95% confidence intervals (CIs) were calculated.Elevated neurofilament light chain (NFL) and decreased sAβPPβ independently separated SSVD from controls, and sAβPPβ also distinguished SSVD from AD and mixed dementia. The combination of NFL and sAβPPβ discriminated SSVD from controls with high accuracy (AUROC 0.903, 95% CI: 0.834-0.972). Additionally, sAβPPβ combined with the core AD biomarkers (amyloid-β42, total tau, and phosphorylated tau181) had a high ability to separate SSVD from AD (AUROC 0.886, 95% CI: 0.830-0.942) and mixed dementia (AUROC 0.903, 95% CI: 0.838-0.968).The high accuracy of NFL and sAβPPβ to separate SSVD from controls supports that SSVD is a specific diagnostic entity. Moreover, SSVD was distinguished from AD and mixed dementia using sAβPPβ in combination with the core AD biomarkers.
  •  
8.
  • Banote, Rakesh Kumar, et al. (författare)
  • beta-Amyloid precursor protein-b is essential for Mauthner cell development in the zebrafish in a Notch-dependent manner
  • 2016
  • Ingår i: Developmental Biology. - : Elsevier BV. - 0012-1606. ; 413:1, s. 26-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) is a transmembrane glycoprotein that has been the subject of intense research because of its implication in Alzheimer's disease. However, the physiological function of APP in the development and maintenance of the central nervous system remains largely unknown. We have previously shown that the APP homologue in zebrafish (Danio rerio), Appb, is required for motor neuron patterning and formation. Here we study the function of Appb during neurogenesis in the zebrafish hindbrain. Partial knockdown of Appb using antisense morpholino oligonucleotides blocked the formation of the Mauthner neurons, uni- or bilaterally, with an aberrant behavior as a consequence of this cellular change. The Appb morphants had decreased neurogenesis, increased notch signaling and notch] a expression at the expense of deltaA/D expression. The Mauthner cell development could be restored either by a general decrease in Notch signaling through gamma-secretase inhibition or by a partial knock down of Notch1a. Together, this demonstrates the importance of Appb in neurogenesis and for the first time shows the essential requirement of Appb in the formation of a specific cell type, the Mauthner cell, in the hindbrain during development. Our results suggest that Appb-regulated neurogenesis is mediated through balancing the Notch1a signaling pathway and provide new insights into the development of the Mauthner cell.
  •  
9.
  • Bliman, David, et al. (författare)
  • A Caged Ret Kinase Inhibitor and its Effect on Motoneuron Development in Zebrafish Embryos
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Proto-oncogene tyrosine-protein kinase receptor RET is implicated in the development and maintenance of neurons of the central and peripheral nervous systems. Attaching activity-compromising photocleavable groups (caging) to inhibitors could allow for external spatiotemporally controlled inhibition using light, potentially providing novel information on how these kinase receptors are involved in cellular processes. Here, caged RET inhibitors were obtained from 3-substituted pyrazolopyrimidine-based compounds by attaching photolabile groups to the exocyclic amino function. The most promising compound displayed excellent inhibitory effect in cell-free, as well as live-cell assays upon decaging. Furthermore, inhibition could be efficiently activated with light in vivo in zebrafish embryos and was shown to effect motoneuron development.
  •  
10.
  • Bos, I., et al. (författare)
  • Amyloid-beta, Tau, and Cognition in Cognitively Normal Older Individuals: Examining the Necessity to Adjust for Biomarker Status in Normative Data
  • 2018
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether amyloid-beta (A beta) and tau affected cognition in cognitively normal (CN) individuals, and whether norms for neuropsychological tests based on biomarker-negative individuals would improve early detection of dementia. We included 907 CN individuals from 8 European cohorts and from the Alzheimer's disease Neuroimaging Initiative. All individuals were aged above 40, had A beta status and neuropsychological data available. Linear mixed models were used to assess the associations of Ali and tau with five neuropsychological tests assessing memory (immediate and delayed recall of Auditory Verbal Learning Test, AVLT), verbal fluency (Verbal Fluency Test, VFT), attention and executive functioning (Trail Making Test, TMT, part A and B). All test except the VFT were associated with status and this influence was augmented by age. We found no influence of tau on any of the cognitive tests. For the AVLT Immediate and Delayed recall and the TMT part A and B, we calculated norms in individuals without A beta pathology (A beta- norms), which we validated in an independent memory-clinic cohort by comparing their predictive accuracy to published norms. For memory tests, the A beta- norms rightfully identified an additional group of individuals at risk of dementia. For non-memory test we found no difference. We confirmed the relationship between Ao and cognition in cognitively normal individuals. The Af3- norms for memory tests in combination with published norms improve prognostic accuracy of dementia.
  •  
11.
  •  
12.
  • Eckerström, Carl, et al. (författare)
  • Characteristic Biomarker and Cognitive Profile in Incipient Mixed Dementia.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 73:2, s. 597-607
  • Tidskriftsartikel (refereegranskat)abstract
    • Research has shown that mixed dementia is more common than previously believed but little is known of its early stages.To examine if incipient mixed dementia can be differentiated from incipient Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SVD) using neuropsychological tests, cerebrospinal fluid (CSF) markers, and magnetic resonance imaging markers.We included 493 patients and controls from the Gothenburg MCI study and used the dementia groups for marker selection (CSF total-tau (T-tau), phospho-tau (P-tau), and amyloid-β42 (Aβ42), 11 neuropsychological tests, and 92 regional brain volumes) and to obtain cut-off values which were then applied to the MCI groups.Incipient mixed dementia was best differentiated from incipient AD by the Word fluency F-A-S test and the Trail making test A. CSF T-tau, P-tau, and Aβ42 differentiated incipient mixed dementia from incipient SVD.Incipient mixed dementia is characterized by an AD-like biomarker profile and an SVD-like cognitive profile. Incipient mixed dementia can be separated from incipient AD and incipient SVD using CSF markers and cognitive testing.
  •  
13.
  • Eckerström, Carl, et al. (författare)
  • Evaluation of the ATN model in a longitudinal memory clinic sample with different underlying disorders.
  • 2021
  • Ingår i: Alzheimer's & dementia. - : Wiley. - 2352-8729. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the usefulness of the 2018 NIA-AA (National Institute on Aging and Alzheimer's Association) research framework in a longitudinal memory clinic study with different clinical outcomes and underlying disorders.We included 420 patients with mild cognitive impairment or subjective cognitive impairment. During the follow up, 27% of the patients converted to dementia, with the majority converting to Alzheimer's disease (AD) or mixed dementia. Based on the baseline values of the cerebrospinal fluid biomarkers, the patients were classified into one of the eight possible ATN groups (amyloid beta [Aβ] aggregation [A], tau aggregation reflecting neurofibrillary tangles [T], and neurodegeneration [N]).The majority of the patients converting to AD and mixed dementia were in ATN groups positive for A (71%). The A+T+N+ group was highly overrepresented among converters to AD and mixed dementia. Patients converting to dementias other than AD or mixed dementia were evenly distributed across the ATN groups.Our findings provide support for the usefulness of the ATN system to detect incipient AD or mixed dementia.
  •  
14.
  • Farnsworth, B., et al. (författare)
  • Gene Expression of Quaking in Sporadic Alzheimer's Disease Patients is Both Upregulated and Related to Expression Levels of Genes Involved in Amyloid Plaque and Neurofibrillary Tangle Formation
  • 2016
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 53:1, s. 209-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Quaking (QKI) is a gene exclusively expressed within glial cells. QKI has previously been implicated in various neurological disorders and diseases, including Alzheimer's disease (AD), a condition for which increasing evidence suggests a central role of glia cells. The objective of the present study was to investigate the expression levels of QKI and three QKI isoforms (QKI5, QKI6, and QKI7) in AD. Genes that have previously been related to the ontogeny and progression of AD, specifically APP, PSEN1, PSEN2, and MAPT, were also investigated. A real-time PCR assay of 123 samples from human postmortem sporadic AD patients and control brains was performed. The expression values were analyzed with an analysis of covariance model and subsequent multiple regressions to explore the possibility of related expression values between QKI, QKI isoforms, and AD-related genes. Further, the sequences of AD-related genes were analyzed for the presence of QKI binding domains. QKI and all measured QKI isoforms were found to be significantly upregulated in AD samples, relative to control samples. However, APP, PSEN1, PSEN2, and MAPT were not found to be significantly different. QKI and QKI isoforms were found to be predictive for the variance of APP, PSEN1, PSEN2, and MAPT, and putative QKI binding sites suggests an interaction with QKI. Overall, these results implicate a possible role of QKI in AD, although the exact mechanism by which this occurs remains to be uncovered.
  •  
15.
  • Farnsworth, Bryn, et al. (författare)
  • Gene Expression of Quaking in Sporadic Alzheimer’s Disease Patients is Both Upregulated and Related to Expression Levels of Genes Involved in Amyloid Plaque and Neurofibrillary Tangle Formation
  • 2016
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 53:1, s. 209-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Quaking (QKI) is a gene exclusively expressed within glial cells. QKI has previously been implicated in various neurological disorders and diseases, including Alzheimer’s disease (AD), a condition for which increasing evidence suggests a central role of glia cells. The objective of the present study was to investigate the expression levels of QKI and three QKI isoforms (QKI5, QKI6, and QKI7) in AD. Genes that have previously been related to the ontogeny and progression of AD, specifically APP, PSEN1, PSEN2, and MAPT, were also investigated. A real-time PCR assay of 123 samples from human postmortem sporadic AD patients and control brains was performed. The expression values were analyzed with an analysis of covariance model and subsequent multiple regressions to explore the possibility of related expression values between QKI, QKI isoforms, and AD-related genes. Further, the sequences of AD-related genes were analyzed for the presence of QKI binding domains. QKI and all measured QKI isoforms were found to be significantly upregulated in AD samples, relative to control samples. However, APP, PSEN1, PSEN2, and MAPT were not found to be significantly different. QKI and QKI isoforms were found to be predictive for the variance of APP, PSEN1, PSEN2, and MAPT, and putative QKI binding sites suggests an interaction with QKI. Overall, these results implicate a possible role of QKI in AD, although the exact mechanism by which this occurs remains to be uncovered.
  •  
16.
  • Farnsworth, Bryn, et al. (författare)
  • Morpholino knockdown of qkib leads to disturbed neural development in the larval zebrafish.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Quaking (QKI) is a member of the Signal Transduction and Activation of RNA (STAR) protein family and has been found to regulate the splicing, quantity, and translation of mRNA. Several studies have also found an association of QKI with a variety of human neurological disorders, such as schizophrenia, ataxia, and Alzheimer’s disease, amongst others. Mouse mutants show clear developmental defects in myelin formation. Critical periods for the investigation of myelin aberration have been precluded by the embryonic lethality of Qk null mice mutants. We have previously shown that the zebrafish is a suitable tool in which to interrogate qki function. Within this study we employ a gene-knockdown approach with the use of morpholinos and the Tg(olig2:DsRed2), and Tg(-4.9sox10:eGFP) transgenic zebrafish lines, and confocal imaging. We find a reduction in the number of oligodendrocytes, critical for the formation of myelin. We also find aberrations in the development and arborization of motor neurons across the spinal cord, and a complete absence of eurydendroid cells within the cerebellum. These findings have parallels to both neuroanatomical evidence from viable Qk mutant mice, and to aspects of related human neurological disease.
  •  
17.
  • Farnsworth, Bryn, et al. (författare)
  • QKI6B is upregulated in schizophrenic brains and predicts GFAP expression
  • Ingår i: Schizophrenia Research. - 0920-9964 .- 1573-2509.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Schizophrenia is a highly heritable disorder with a heterogeneous symptomatology. Research increasingly indicates the importance of the crucial and often overlooked glial perturbations within schizophrenic brains. Within this study, we examined an isoform of quaking (gene encoding an RNA-binding protein that is exclusively expressed in glial cells), known as QKI6B, and an astrocyte marker glial fibrillary acidic protein (GFAP), postulated to be under the regulation of QKI. The expression levels of these genes were quantified across post-mortem samples from the prefrontal cortex of 55 schizophrenic brains, and 55 healthy control brains, using real-time PCR. We report, through an analysis of covariance (ANCOVA) model, an upregulation of both QKI6B, and GFAP in the prefrontal cortex of schizophrenic brains. Previous research has suggested that the QKI protein directly regulates the expression of several genes through interaction with a motif in the target’s sequence, termed the Quaking Response Element (QRE). We therefore examined if QKI6B expression can predict the outcome of GFAP, and several oligodendrocyte-related genes, using a multiple linear regression approach. We found that QKI6B significantly predicts, and possibly regulates the expression of GFAP, but does not predict oligodendrocyte-related gene outcome, as previously seen with other QKI isoforms. 
  •  
18.
  • Farnsworth, B., 1987-, et al. (författare)
  • QKI6B mRNA levels are upregulated in schizophrenia and predict GFAP expression
  • 2017
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993 .- 1872-6240. ; 1669, s. 63-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder with a heterogeneous symptomatology. Research increasingly indicates the importance of the crucial and often overlooked glial perturbations within schizophrenia. Within this study, we examined an isoform of quaking (a gene encoding an RNA-binding protein that is exclusively expressed in glial cells), known as QKI6B, and a prototypical astrocyte marker, glial fibrillary acidic protein (GFAP), postulated to be under the regulation of QKI. The expression levels of these genes were quantified across post-mortem brain samples from 55 schizophrenic individuals, and 55 healthy controls, using real-time PCR. We report, through an analysis of covariance (ANCOVA) model, an upregulation of both QKI6B, and GFAP in the prefrontal cortex of brain samples of schizophrenic individuals, as compared to control samples. Previous research has suggested that the QKI protein directly regulates the expression of several genes through interaction with a motif in the target's sequence, termed the Quaking Response Element (QRE). We therefore examined if QICI6B expression can predict the outcome of GFAP, and several oligodendrocyte-related genes, using a multiple linear regression approach. We found that QKI6B significantly predicts the expression of GFAP, but does not predict oligodendrocyte-related gene outcome, as previously seen with other QKI isoforms.
  •  
19.
  •  
20.
  •  
21.
  • Hallén, Kristofer, et al. (författare)
  • mGluR-Mediated calcium oscillations in the lamprey: a computational model
  • 2004
  • Ingår i: Neurocomputing. - AMSTERDAM : Elsevier BV. - 0925-2312 .- 1872-8286. ; 58-60, s. 431-435, s. 431-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Slow Ca2+ oscillations caused by release from intracellular stores have been observed in neurons in the lamprey spinal cord. These oscillations are triggered by activation of metabotropic glutamate receptors on the cell surface. The pathway leading from receptor activation to the inositol triphosphate-mediated release of Ca2+ from the endoplasmatic reticulum has been modelled in order to facilitate further understanding of the nature of these oscillations. The model generates Ca2+ oscillations with a frequency range of 0.01–0.09 Hz. A prediction of the model is that the frequency will increase with a stronger extracellular glutamate signal.
  •  
22.
  • Hong, Shengjun, et al. (författare)
  • Genome-wide association study of Alzheimer's disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset.
  • 2020
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from quantifications of five separate amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.
  •  
23.
  • Issa, Fadi A, et al. (författare)
  • Neural circuit activity in freely behaving zebrafish (Danio rerio).
  • 2011
  • Ingår i: The Journal of experimental biology. - : The Company of Biologists. - 1477-9145 .- 0022-0949. ; 214:Pt 6, s. 1028-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions.
  •  
24.
  • Jeppsson, Anna, et al. (författare)
  • Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease.
  • 2022
  • Ingår i: Frontiers in neurology. - : Frontiers Media SA. - 1664-2295. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we examine similarities and differences between 52 patients with idiopathic normal pressure hydrocephalus (iNPH) and 17 patients with subcortical small vessel disease (SSVD), in comparison to 28 healthy controls (HCs) by a panel of cerebrospinal fluid (CSF) biomarkers.We analyzed soluble amyloid precursor protein alpha (sAPPα) and beta (sAPPβ), Aβ isoforms -38, -40, and -42, neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), matrix metalloproteinases (MMP -1, -2, -3, -9, and -10), and tissue inhibitors of metalloproteinase 1 (TIMP1). Radiological signs of white matter damage were scored using the age-related white matter changes (ARWMC) scale.All amyloid fragments were reduced in iNPH and SSVD (p < 0.05), although more in iNPH than in SSVD in comparison to HC. iNPH and SSVD showed comparable elevations of NFL, MBP, and GFAP (p < 0.05). MMPs were similar in all three groups except for MMP-10, which was increased in iNPH and SSVD. Patients with iNPH had larger ventricles and fewer WMCs than patients with SSVD.The results indicate that patients with iNPH and SSVD share common features of subcortical neuronal degeneration, demyelination, and astroglial response. The reduction in all APP-derived proteins characterizing iNPH patients is also present, indicating that SSVD encompasses similar pathophysiological phenomena as iNPH.
  •  
25.
  • Karlsson, Sara, 1980, et al. (författare)
  • Effects of sex and gonadectomy on social investigation and social recognition in mice
  • 2015
  • Ingår i: Bmc Neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An individual's ability to recognise and pay attention to others is crucial in order to behave appropriately in various social situations. Studies in humans have shown a sex bias in sociability as well as social memory, indicating that females have better face memory and gaze more at the eyes of others, but information about the factors that underpin these differences is sparse. Our aim was therefore to investigate if sociability and social recognition differ between female and male mice, and if so, to what extent gonadal hormones may be involved. Intact and gona-dectomised male and female mice were assessed for sociability and social recognition using the three-chambered sociability paradigm, as well as the social discrimination test. Furthermore, we conducted a novel object recognition test, a locomotor activity test and an odour habituation/dishabituation test. Results: The present study showed that the ability to recognise other individuals is intact in males with and without gonads, as well as in intact females, whereas it is hampered in gonadectomised females. Additionally, intact male mice displayed more persistent investigatory behaviour compared to the other groups, although the intact females showed elevated basal locomotor activity. In addition, all groups had intact object memory and habituated to odours. Conclusions: Our results suggest that intact male mice investigate conspecifics more than females do, and these differences seem to depend upon circulating hormones released from the testis. As these results seem to contrast what is known from human studies, they should be taken into consideration when using the three-chambered apparatus, and similar paradigms as animal models of social deficits in e.g. autism. Other behavioural tests, and animal models, may be more suitable for translational studies between patients and experimental animals.
  •  
26.
  • Karlsson, Sara, 1980, et al. (författare)
  • Neural Androgen Receptors Modulate Gene Expression and Social Recognition But Not Social Investigation
  • 2016
  • Ingår i: Frontiers in Behavioral Neuroscience. - : Frontiers Media SA. - 1662-5153. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of sex and androgen receptors (ARs) for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest toward male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esrl, Cyp19a1, Ucn3, Crh. and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation toward both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William's syndrome.
  •  
27.
  • Kettunen, Petronella, et al. (författare)
  • Blood-brain barrier dysfunction and reduced cerebrospinal fluid levels of soluble amyloid precursor protein-β in patients with subcortical small-vessel disease.
  • 2022
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical small-vessel disease (SSVD) is the most common vascular cognitive disorder. However, because no disease-specific cerebrospinal fluid (CSF) biomarkers are available for SSVD, our aim was to identify such markers.We included 170 healthy controls and patients from the Gothenburg Mild Cognitive Impairment (MCI) study clinically diagnosed with SSVD dementia, Alzheimer's disease (AD), or mixed AD/SSVD. We quantified CSF levels of amyloid-β (Aβ)x-38, Aβx-40, Aβx-42, as well as soluble amyloid precursor protein (sAPP)-α and sAPP-β.sAPP-β was lower in SSVD patients than in AD patients and controls. Receiver-operating characteristic (ROC) analyses showed that sAPP-β moderately separated SSVD from AD and controls. Moreover, the CSF/serum albumin ratio was elevated exclusively in SSVD and could moderately separate SSVD from the other groups in ROC analyses.SSVD has a biomarker profile that differs from that of AD and controls, and to some extent also from mixed AD/SSVD, suggesting that signs of blood-brain barrier (BBB) dysfunction and sAPP-β could be additional tools to diagnose SSVD.Patients with subcortical small-vessel disease (SSVD) exhibited reduced levels of sAPP-β and disturbances of the blood-brain barrier (BBB).This biochemical pattern is different from that of Alzheimer's disease (AD) and to some degree from that of mixed AD/SSVD.Our findings are speaking in favor of the concept that SSVD is a distinct vascular cognitive disorder (VCD) form.
  •  
28.
  • Kettunen, Petronella, et al. (författare)
  • Calcium imaging in the zebrafish.
  • 2012
  • Ingår i: Calcium Signaling. Advances in Experimental Medicine and Biology, Vol. 740, Ed. Shahidul Islam. - Dordrecht : Springer. - 0065-2598. - 9789400728875 ; 740, s. 1039-71
  • Bokkapitel (refereegranskat)abstract
    • The zebrafish (Danio rerio) has emerged as a new model system during the last three decades. The fact that the zebrafish larva is transparent enables sophisticated in vivo imaging. While being the vertebrate, the reduced complexity of its nervous system and small size make it possible to follow large-scale activity in the whole brain. Its genome is sequenced and many genetic and molecular tools have been developed that simplify the study of gene function. Since the mid 1990s, the embryonic development and neuronal function of the larval, and later, adult zebrafish have been studied using calcium imaging methods. The choice of calcium indicator depends on the desired number of cells to study and cell accessibility. Dextran indicators have been used to label cells in the developing embryo from dye injection into the one-cell stage. Dextrans have also been useful for retrograde labeling of spinal cord neurons and cells in the olfactory system. Acetoxymethyl (AM) esters permit labeling of larger areas of tissue such as the tectum, a region responsible for visual processing. Genetically encoded calcium indicators have been expressed in various tissues by the use of cell-specific promoters. These studies have contributed greatly to our understanding of basic biological principles during development and adulthood, and of the function of disease-related genes in a vertebrate system.
  •  
29.
  • Kettunen, Petronella, et al. (författare)
  • Calcium Imaging in the Zebrafish.
  • 2020
  • Ingår i: Calcium Signaling. Advances in experimental medicine and biology. Islam M. (red.). - Cham : Springer. - 0065-2598. - 9783030124564 ; , s. 901-942
  • Bokkapitel (refereegranskat)abstract
    • The zebrafish (Danio rerio) has emerged as a widely used model system during the last four decades. The fact that the zebrafish larva is transparent enables sophisticated in vivo imaging, including calcium imaging of intracellular transients in many different tissues. While being a vertebrate, the reduced complexity of its nervous system and small size make it possible to follow large-scale activity in the whole brain. Its genome is sequenced and many genetic and molecular tools have been developed that simplify the study of gene function in health and disease. Since the mid 90's, the development and neuronal function of the embryonic, larval, and later, adult zebrafish have been studied using calcium imaging methods. This updated chapter is reviewing the advances in methods and research findings of zebrafish calcium imaging during the last decade. The choice of calcium indicator depends on the desired number of cells to study and cell accessibility. Synthetic calcium indicators, conjugated to dextrans and acetoxymethyl (AM) esters, are still used to label specific neuronal cell types in the hindbrain and the olfactory system. However, genetically encoded calcium indicators, such as aequorin and the GCaMP family of indicators, expressed in various tissues by the use of cell-specific promoters, are now the choice for most applications, including brain-wide imaging. Calcium imaging in the zebrafish has contributed greatly to our understanding of basic biological principles during development and adulthood, and the function of disease-related genes in a vertebrate system.
  •  
30.
  • Kettunen, Petronella, et al. (författare)
  • Genetic Variants of GSK3B are Associated with Biomarkers for Alzheimer's Disease and Cognitive Function
  • 2015
  • Ingår i: Journal of Alzheimers Disease. - 1387-2877. ; 44:4, s. 1313-1322
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycogen synthase kinase 3 beta (GSK3B) is the major kinase phosphorylating tau protein. Hyperphosphorylated tau is one of the hallmarks of Alzheimer's disease (AD). Despite extensive research, the role of GSK3B in AD pathogenesis is not fully understood.Objective: To evaluate possible associations between gene variants of GSK3B and risk of AD. Methods: Twelve GSK3B tag single-nucleotide polymorphisms (SNPs), together with the previously AD-associated rs334558, were analyzed in 583 AD patients and 673 controls. Analyses on single marker and haplotype levels were done to relate to risk of AD, Mini-Mental State Examination (MMSE) scores, and cerebrospinal fluid (CSF) biomarker levels of total tau (T-tau), hyperphosphorylated tau (P-tau(181)), and amyloid-beta (A beta(42)).Results: After correction for multiple testing, we found a number of associations of gene variants with CSF biomarker levels and cognitive function in the AD patients. Firstly, rs334558 was associated with elevated T-tau levels (p(c) = 0.04). Next, rs1154597 showed association with reducedA beta(42) levels (pc = 0.007). Lastly, rs3107669was associated with lower MMSE scores (p(c) = 0.03). In addition, one more SNP was nominally significantly associated with reduced A beta(42) levels and another was associated with reduced MMSE.Conclusion: We found GSK3B gene variants associated with cognitive function and CSF biomarkers T-tau and A beta(42). To our knowledge, this is the first time GSK3B has been associated with cognitive function or CSF biomarkers reflecting neuronal degeneration (T-tau) and brain amyloid load (A beta(42)). The regulation of GSK3B needs to be investigated further, to fully understand how these GSK3B gene variants are involved in AD pathogenesis.
  •  
31.
  • Kettunen, Petronella (författare)
  • Neuromodulation within a spinal locomotor network : role of metabotropic glutamate receptor subtypes
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The metabotropic glutamate receptors, mGluRs, are G-protein coupled receptors. They consist of eight cloned subtypes, which are divided into three groups depending on the amino acid sequence similarity, pharmacology and their signal pathways. In the lamprey spinal cord, group I mGluRs are located postsynaptically, while group II and III are presynaptic and depress synaptic transmission. The goal of this thesis has been to elucidate the mechanisms by which the two subtypes of group I mGluRs, i.e. mGluR1 and mGluR5, modulate the firing properties of single neurons, the synaptic interactions and the overall activity of the spinal locomotor network in the lamprey. mGluR1 activation by endogenously released glutamate increases the frequency of the locomotor rhythm induced by NMDA in the isolated lamprey spinal cord preparation. This increase in the frequency is the result of a number of cellular and molecular mechanisms that have been studied in detail. Firstly, mGIuR1 potentiates the NMDA-induced current and modulates NMDAinduced TTX-resistant membrane potential oscillations known to occur during locomotion. Mathematical simulations of the interaction between mGluR1 and NMDA receptors reproduce the modulation of the NMDA-induced oscillations and the increase in the locomotor frequency. Secondly, mGluR1 activation depolarizes the membrane potential of neurons and consequently induces repetitive firing. These effects are due to an inhibition of a leak current responsible for setting the resting membrane potential. Interestingly, mGluR1 activates different signaling pathways to modulate NMDA current and leak conductance. Both effects require activation of Gproteins. The mGluR1-mediated inhibition of leak current requires PLC activation and release of Ca2+ from internal stores, as well as tyrosine kinase activation. The potentiation of NMDA current is not, however, dependent on an increase in intracellular Ca2+ or on tyrosine kinases. Thirdly, activation of mGluR1 receptors gives rise to a synthesis and release of endocannabinoids from postsynaptic neurons. The released endocannabinoids act as retrograde messengers which bind to presynaptic receptors and reduce glycinergic synaptic transmission. The reduced inhibitory transmission will result in an increase in the locomotor frequency. Hence, mGluR1 activation triggers the release of endocannabinoids which thus contribute to the mGlur1 mediated modulation of the locomotor network operation. Finally, endogenous activation of mGluR5 during locomotion decreases the burst frequency and produces long-lasting oscillations of the intracellular Ca2+ concentration. These oscillations are mediated through PLC and Ca2+ release from internal stores. Furthermore, they are also dependent on Ca2+ influx through L-type Ca2+ channels but do not involve PKC activation. Thus, mGluR5 seems to modulate the locomotor frequency via mechanisms involving oscillations of intracellular Ca 2+ concentration. In conclusion, the two group I mGluRs subtypes, mGluR1 and mGluR5, use separate signaling pathways and mediate opposite effects on locomotor activity. While the modulatory effects of mGluR5 seems to involve Ca2+ oscillations, those of rnGluR1 depend on different cellular and synaptic mechanisms which act in a synergistic manner to regulate the locomotor frequency.
  •  
32.
  • Kim, Min, et al. (författare)
  • Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer's Disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:6, s. 817-827
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers.METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis.RESULTS: Eight metabolites were associated with amyloid β and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory.DISCUSSION: PFAMs have been found increased and associated with amyloid β burden in CSF and clinical measures.
  •  
33.
  • Landgren, Sara, 1980, et al. (författare)
  • A novel ARC gene polymorphism is associated with reduced risk of Alzheimer's disease
  • 2012
  • Ingår i: Journal of Neural Transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 119:7, s. 833-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most common neurodegenerative disease, and is clinically characterized by cognitive disturbances and the accumulation of the amyloid beta (A beta) peptides in plaques in the brain. Recent studies have shown the links between AD and the immediate-early gene Arc (activity-regulated cytoskeleton-associated protein), involved in synaptic plasticity and memory consolidation. For example, AD mouse models show a decreased expression of Arc mRNA in the brain. In additional, acute A beta application to brain slices leads to a widespread ARC protein diffusion, unlike the normal defined localization to synapses. In this study, we investigated genetic variation in human ARC and the risk of developing AD. To this end, we genotyped 713 subjects diagnosed with AD and 841 controls without dementia. ARC was sequenced in a group of healthy individuals, and seven previously known SNPs and three novel SNPs were identified. Two of the newly found SNPs were intronic and one, +2852(G/A), was located in the 3'UTR. Three tag SNPs were selected, including the novel SNP +2852(G/A), to relate to risk of AD, Mini Mental State Examination (MMSE) scores and cerebrospinal fluid (CSF) biomarker levels of total tau (T-tau), hyperphosphorylated tau181 (P-tau(181)) and A beta(1-42). The AA genotype of the newly found 3'-UTR SNP +2852(A/G), was associated with a decreased risk of AD (p (c) = 0.005; OR = 0.74; 95 % CI: 0.61-0.89). No associations of single SNPs or haplotypes with MMSE score or CSF biomarkers were found. Here we report a novel ARC SNP associated with a reduced risk of developing AD. To our knowledge, this is the first study associating a gene variant of ARC with any disease. The location of the SNP within the 3'UTR indicates that dendritic targeting of ARC mRNA could be involved in the molecular mechanisms underlying this protective function. However, further investigation of the importance of this SNP for ARC function, ARC processing and the pathology of AD is needed.
  •  
34.
  • Landin, Jenny, et al. (författare)
  • Oxytocin Receptors Regulate Social Preference in Zebrafish.
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With a strong tendency to socialise, the zebrafish is a useful model to study social behaviour, with implications for better treatments of social impairments, for instance in autism spectrum disorders. Although oxytocin is crucial for social behaviour in mammals, the importance of the fish orthologue - isotocin or zebrafish oxytocin (zOT) - for social behaviour in zebrafish is unclear. The aims of this study were firstly, to elucidate the receptor specificity of zOT and the related vasotocin or zebrafish vasopressin (zVP; the orthologue of mammalian vasopressin) and the nonpeptidergic oxytocin receptor antagonist L-368,899, and secondly to investigate if L-368,899 inhibits social preference in zebrafish. The potencies of ligands were evaluated for zOT/zVP family receptors in HEK293 cells. Adult and larval zebrafish were treated with L-368,899 or vehicle and subsequently assessed for social behaviour and anxiety (adults only). The antagonist L-368,899 specifically inhibited the two zOT receptors, but not the two zVP-1 receptors. The antagonist decreased social preference in adult and larval zebrafish. It did not affect anxiety in adults. These results indicate that endogenous zOT, and possibly zVP, is involved in social behaviour in zebrafish via either or both of the two zOT receptors, and show promise for future explorations of the anatomy and evolution of networks underlying social behaviour.
  •  
35.
  • Larsson, Susanna, et al. (författare)
  • Orthotopic Transplantation of Human Paediatric High-Grade Glioma in Zebrafish Larvae
  • 2022
  • Ingår i: Brain Sciences. - : MDPI AG. - 2076-3425. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain tumours are the most common cause of death among children with solid tumours, and high-grade gliomas (HGG) are among the most devastating forms with very poor outcomes. In the search for more effective treatments for paediatric HGG, there is a need for better experimental models. To date, there are no xenograft zebrafish models developed for human paediatric HGG; existing models rely on adult cells. The use of paediatric models is of great importance since it is well known that the genetic and epigenetic mechanisms behind adult and paediatric disease differ greatly. In this study, we present a clinically relevant in vivo model based on paediatric primary glioma stem cell (GSC) cultures, which after orthotopic injection into the zebrafish larvae, can be monitored using confocal imaging over time. We show that cells invade the brain tissue and can be followed up to 8 days post-injection while they establish in the fore/mid brain. This model offers an in vivo system where tumour invasion can be monitored and drug treatments quickly be evaluated. The possibility to monitor patient-specific cells has the potential to contribute to a better understanding of cellular behaviour and personalised treatments in the future.
  •  
36.
  • Melin, Jeanette, et al. (författare)
  • Entropy-based explanations of serial position and learning effects in ordinal responses to word list tests
  • 2023
  • Ingår i: Acta IMEKO. - 2221-870X. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring a person’s cognitive abilities, such as memory and learning, is central in many medical conditions to reliably diagnose, treat and monitor disease progression. Common tests typically include tasks of recalling sequences of blocks, digits or words. Recalling a word list is affected by so-called serial position effects (SPE), meaning that words at the beginning or end of the list are more likely to be recalled. In our earlier work, as part of including ordinal and nominal properties in metrology, compensation for ordinality in the raw test scores has been performed with psychometric Rasch measurement theory. Thereafter, SPE have been successfully explained with construct specification equations (CSE) dominated by information theoretical entropy as candidate reference measurement procedures. Here, we present how previous German results for explaining memory difficulty in the immediate recalling (IR, trial 1) task of the Rey’s Auditory Verbal Learning Test (RAVLT) can be replicated with a Swedish cohort (the Gothenburg Mild Cognitive Impairment study, n = 251). This CSE replicability for RAVLT demonstrates comparability across the two cohorts in a kind of inter-laboratory study. Moreover, RAVLT includes repeated trials and learning through practice is expected. How memory task difficulty changes over the eight trials in RAVLT is studied: SPE are not so prominent for the delayed recalling sequences and there is an overall reduction in the task difficulty CSE intercept with trial number, interpreted as an effect of learning. To conclude, the methodology and evidence provided here can be clinically used not only to measure a person’s memory ability but also his or her learning ability, as well as understanding the relationship between learning ability and other cognitive domains.
  •  
37.
  • Minta, Karolina, et al. (författare)
  • Brevican and Neurocan Peptides as Potential Cerebrospinal Fluid Biomarkers for Differentiation Between Vascular Dementia and Alzheimer's Disease
  • 2021
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1387-2877 .- 1875-8908. ; 79:2, s. 729-741
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Brevican and neurocan are central nervous system-specific extracellular matrix proteoglycans. They are degraded by extracellular enzymes, such as metalloproteinases. However, their degradation profile is largely unexplored in cerebrospinal fluid (CSF).OBJECTIVE: The study aim was to quantify proteolytic peptides derived from brevican and neurocan in human CSF of patients with Alzheimer's disease (AD) and vascular dementia (VaD) compared with controls.METHODS: The first cohort consisted of 75 individuals including 25 patients with AD, 7 with mild cognitive impairment (MCI) diagnosed with AD upon follow-up, 10 patients with VaD or MCI diagnosed with VaD upon follow-up, and 33 healthy controls and cognitively stable MCI patients. In the second cohort, 31 individuals were included (5 AD patients, 14 VaD patients and 12 healthy controls). Twenty proteolytic peptides derived from brevican (n = 9) and neurocan (n = 11) were quantified using high-resolution parallel reaction monitoring mass spectrometry.RESULTS: In the first cohort, the majority of CSF concentrations of brevican and neurocan peptides were significantly decreased inVaDas compared withADpatients (AUC = 0.83.0.93, p≤0.05) and as compared with the control group (AUC = 0.79.0.87, p ≤ 0.05). In the second cohort, CSF concentrations of two brevican peptides (B87, B156) were significantly decreased in VaD compared with AD (AUC = 0.86.0.91, p ≤ 0.05) and to controls (AUC = 0.80.0.82, p ≤ 0.05), while other brevican and neurocan peptides showed a clear trend to be decreased in VaD compared with AD (AUC = 0.64.80, p > 0.05). No peptides differed between AD and controls.CONCLUSION: Brevican and neurocan peptides are potential diagnostic biomarkers for VaD, with ability to separate VaD from AD.
  •  
38.
  •  
39.
  • Radomska, Katarzyna J., et al. (författare)
  • Characterization and Expression of the Zebrafish qki Paralogs
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Quaking (QKI) is an RNA-binding protein involved in post-transcriptional mRNA processing. This gene is found to be associated with several human neurological disorders. Early expression of QKI proteins in the developing mouse neuroepithelium, together with neural tube defects in Qk mouse mutants, suggest the functional requirement of Qk for the establishment of the nervous system. As a knockout of Qk is embryonic lethal in mice, other model systems like the zebrafish could serve as a tool to study the developmental functions of qki. In the present study we sought to characterize the evolutionary relationship and spatiotemporal expression of qkia, qki2, and qkib; zebrafish homologs of human QKI. We found that qkia is an ancestral paralog of the single tetrapod Qk gene that was likely lost during the fin-to-limb transition. Conversely, qkib and qki2 are orthologs, emerging at the root of the vertebrate and teleost lineage, respectively. Both qki2 and qkib, but not qkia, were expressed in the progenitor domains of the central nervous system, similar to expression of the single gene in mice. Despite having partially overlapping expression domains, each gene has a unique expression pattern, suggesting that these genes have undergone subfunctionalization following duplication. Therefore, we suggest the zebrafish could be used to study the separate functions of qki genes during embryonic development.
  •  
40.
  •  
41.
  • Shi, Liu, et al. (författare)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
42.
  • Shi, Liu, et al. (författare)
  • Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.
  • 2019
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 15:11, s. 1478-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.4001 plasma proteins were measured in two groups of participants (discovery group=516, replication group=365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.A panel of proteins (n=44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve=0.78) and the replication group (area under the curve=0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization.The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.
  •  
43.
  • Shi, Liu, et al. (författare)
  • Replication study of plasma proteins relating to Alzheimer's pathology.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 17:9, s. 1452-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively.Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis.Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.
  •  
44.
  • Stamate, Daniel, et al. (författare)
  • A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood : Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer’s & Dementia. - : John Wiley & Sons. - 2352-8737. ; 5:C, s. 933-938
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers.MethodsThis study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).ResultsOn the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DiscussionThis study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
  •  
45.
  • Svensson, Johan, 1964, et al. (författare)
  • Cerebrospinal Fluid Sulfatide Levels Lack Diagnostic Utility in the Subcortical Small Vessel Type of Dementia.
  • 2021
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 82:2, s. 781-790
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfatides (STs) in cerebrospinal fluid (CSF), as well as magnetic resonance imaging (MRI)-detected white matter hyperintensities (WMHs), may reflect demyelination. Here, we investigated the diagnostic utility of CSF ST levels in the subcortical small vessel type of dementia (SSVD), which is characterized by the presence of brain WMHs.To study the diagnostic utility of CSF ST levels in SSVD.This was a mono-center, cross-sectional study of SSVD (n=16), Alzheimer's disease (n=40), mixed dementia (n=27), and healthy controls (n=33). Totally, 20 ST species were measured in CSF by liquid chromatography-mass spectrometry (LC-MS/MS).CSF total ST levels, as well as CSF levels of hydroxylated and nonhydroxylated ST species, did not differ across the study groups. In contrast, CSF neurofilament light chain (NFL) levels separated the patient groups from the controls. CSF total ST level correlated with CSF/serum albumin ratio in the total study population (r=0.64, p< 0.001) and in all individual study groups. Furthermore, CSF total ST level correlated positively with MRI-estimated WMH volume in the total study population (r=0.30, p< 0.05), but it did not correlate with CSF NFL level.Although there was some relation between CSF total ST level and WMH volume, CSF ST levels were unaltered in all dementia groups compared to the controls. This suggests that CSF total ST level is a poor biomarker of demyelination in SSVD. Further studies are needed to investigate the mechanisms underlying the marked correlation between CSF total ST level and CSF/serum albumin ratio.
  •  
46.
  • Wallin, Anders, 1950, et al. (författare)
  • Cognitive medicine - a new approach in health care science.
  • 2018
  • Ingår i: BMC psychiatry. - : Springer Science and Business Media LLC. - 1471-244X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The challenges of today's society call for more knowledge about how to maintain all aspects of cognitive health, such as speed/attention, memory/learning, visuospatial ability, language, executive capacity and social cognition during the life course.Medical advances have improved treatments of numerous diseases, but the cognitive implications have not been sufficiently addressed. Disability induced by cognitive dysfunction is also a major issue in groups of patients not suffering from Alzheimer's disease or related disorders. Recent studies indicate that several negative lifestyle factors can contribute to the development of cognitive impairment, but intervention and prevention strategies have not been implemented. Disability due to cognitive failure among the workforce has become a major challenge. Globally, the changing aging pyramid results in increased prevalence of cognitive disorders, and the diversity of cultures influences the expression, manifestation and consequences of cognitive dysfunction.Major tasks in the field of cognitive medicine are basic neuroscience research to uncover diverse disease mechanisms, determinations of the prevalence of cognitive dysfunction, health-economical evaluations, and intervention studies. Raising awareness for cognitive medicine as a clinical topic would also highlight the importance of specialized health care units for an integrative approach to the treatment of cognitive dysfunctions.
  •  
47.
  • Wallin, Anders, 1950, et al. (författare)
  • Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease
  • 2018
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877. ; 62:3, s. 1417-1441
  • Forskningsöversikt (refereegranskat)abstract
    • Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer's disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder.
  •  
48.
  • Wenger, Anna, 1990, et al. (författare)
  • Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors.
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8, s. 18626-18639
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain tumors are the leading cause of cancer-related death in children but high-grade gliomas in children and adolescents have remained a relatively under-investigated disease despite this. A better understanding of the cellular and molecular pathogenesis of the diseases is required in order to improve the outcome for these children. In vitro-cultured primary tumor cells from patients are indispensable tools for this purpose by enabling functional analyses and development of new therapies. However, relevant well-characterized in vitro cultures from pediatric gliomas cultured under serum-free conditions have been lacking. We have therefore established patient-derived in vitro cultures and performed thorough characterization of the cells using large-scale analyses of DNA methylation, copy-number alterations and investigated their stability during prolonged time in culture. We show that the cells were stable during prolonged culture in serum-free stem cell media without apparent alterations in morphology or growth rate. The cells were proliferative, positive for stem cell markers, able to respond to differentiation cues and initiated tumors in zebrafish and mice suggesting that the cells are cancer stem cells or progenitor cells. The cells accurately mirrored the tumor they were derived from in terms of methylation pattern, copy number alterations and DNA mutations. These unique primary in vitro cultures can thus be used as a relevant and robust model system for functional studies on pediatric brain tumors.
  •  
49.
  • Westwood, Sarah, et al. (författare)
  • Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer's Disease Multimodal Biomarker Discovery Cohort
  • 2020
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 74:1, s. 213-225
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ɛ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure.
  •  
50.
  • Xu, Jin, et al. (författare)
  • Sex-Specific Metabolic Pathways Were Associated with Alzheimer's Disease (AD) Endophenotypes in the European Medical Information Framework for AD Multimodal Biomarker Discovery Cohort
  • 2021
  • Ingår i: Biomedicines. - : MDPI. - 2227-9059. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives.METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD.RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046).CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 52
Typ av publikation
tidskriftsartikel (45)
annan publikation (3)
bokkapitel (2)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Kettunen, Petronella (52)
Wallin, Anders, 1950 (20)
Zetterberg, Henrik, ... (19)
Blennow, Kaj, 1958 (15)
Svensson, Johan, 196 ... (9)
Vandenberghe, Rik (8)
visa fler...
Scheltens, Philip (8)
Martínez-Lage, Pablo (8)
Lleó, Alberto (8)
Engelborghs, Sebasti ... (8)
Lovestone, Simon (8)
Freund-Levi, Yvonne, ... (8)
Bertram, Lars (8)
Sleegers, Kristel (8)
Bos, Isabelle (8)
Popp, Julius (8)
Dobricic, Valerija (8)
Streffer, Johannes (8)
Bordet, Régis (8)
Gabel, Silvy (8)
Blin, Olivier (8)
Tsolaki, Magda (7)
Teunissen, Charlotte ... (7)
Rami, Lorena (7)
Frisoni, Giovanni B. (7)
Hye, Abdul (7)
Frölich, Lutz (7)
Vos, Stephanie J. B. (7)
Johannsen, Peter (7)
Tainta, Mikel (7)
Peyratout, Gwendolin ... (7)
Legido-Quigley, Cris ... (7)
Barkhof, Frederik (6)
Molinuevo, José L (6)
Eckerström, Marie, 1 ... (6)
Visser, Pieter Jelle (6)
Verhey, Frans (6)
Ashton, Nicholas J. (5)
Jazin, Elena (5)
Nevado-Holgado, Alej ... (5)
Jonsson, Michael, 19 ... (5)
Eckerström, Carl (5)
Richardson, Jill C (5)
Farnsworth, Bryn (5)
Rolstad, Sindre, 197 ... (4)
Alcolea, Daniel (4)
Westberg, Lars, 1973 (4)
Wallin, Anders (4)
Kate, Mara Ten (4)
Ten Kate, Mara (4)
visa färre...
Lärosäte
Göteborgs universitet (45)
Karolinska Institutet (18)
Uppsala universitet (8)
Örebro universitet (8)
Lunds universitet (4)
Chalmers tekniska högskola (4)
visa fler...
Linköpings universitet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (45)
Naturvetenskap (15)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy