SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kicklighter D) "

Sökning: WFRF:(Kicklighter D)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schimel, D, et al. (författare)
  • Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States
  • 2000
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 287:5460, s. 2004-2006
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.
  •  
2.
  •  
3.
  • Jackson, R B, et al. (författare)
  • Belowground consequences of vegetation change and their treatment in models
  • 2000
  • Ingår i: Ecological Applications. - 1051-0761. ; 10:2, s. 470-483
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent and consequences of global land-cover and land-use change are increasingly apparent. One consequence not so apparent is the altered structure of plants belowground. This paper examines such belowground changes, emphasizing the interaction of altered root distributions with other factors and their treatment in models. Shifts of woody and herbaceous vegetation with deforestation, afforestation, and woody plant encroachment typically alter the depth and distribution of plant rests, influencing soil nutrients, the water balance, and net primary productivity (NPP). For example, our analysis of global soil data sets shows that the major plant nutrients C, N, P, and K are more shallowly distributed than are Ca, Mg, and Na, but patterns for each element vary with the dominant vegetation type. After controlling for climate, soil C and N are distributed more deeply in arid shrublands than in arid grasslands, and subhumid forests have shallower nutrient distributions than do subhumid grasslands. Consequently, changes in vegetation may influence the distribution of soil carbon and nutrients over time (perhaps decades to centuries). Shifts in the water balance are typically much more rapid. Catchment studies indicate that the water yield decreases 25-40 mm for each 10% increase in tree cover, and increases in transpiration of water taken up by deep roots may account for as much as 50% of observed responses. Because models are increasingly important for predicting the consequences of vegetation change, we discuss the treatment of belowground processes and how different treatments affect model outputs. Whether models are parameterized by biome or plant life form (or neither), use single or multiple soil layers, or include N and water limitation will all affect predicted outcomes. Acknowledging and understanding such differences should help constrain predictions of vegetation change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy