SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiem Anthony S.) "

Sökning: WFRF:(Kiem Anthony S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnson, Fiona, et al. (författare)
  • Natural hazards in Australia: floods
  • 2016
  • Ingår i: Climatic Change. - : Springer Nature. - 0165-0009 .- 1573-1480. ; 139:1, s. 21-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Floods are caused by a number of interacting factors, making it remarkably difficult to explain changes in flood hazard. This paper reviews the current understanding of historical trends and variability in flood hazard across Australia. Links between flood and rainfall trends cannot be made due to the influence of climate processes over a number of spatial and temporal scales as well as landscape changes that affect the catchment response. There are also still considerable uncertainties in future rainfall projections, particularly for sub-daily extreme rainfall events. This is in addition to the inherent uncertainty in hydrological modelling such as antecedent conditions and feedback mechanisms. Research questions are posed based on the current state of knowledge. These include a need for high-resolution climate modelling studies and efforts in compiling and analysing databases of sub-daily rainfall and flood records. Finally there is a need to develop modelling frameworks that can deal with the interaction between climate processes at different spatio-temporal scales, so that historical flood trends can be better explained and future flood behaviour understood.
  •  
2.
  • Kiem, Anthony S., et al. (författare)
  • Natural hazards in Australia: droughts
  • 2016
  • Ingår i: Climatic Change. - : Springer Nature. - 0165-0009 .- 1573-1480. ; 139:1, s. 37-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Droughts are a recurrent and natural part of the Australian hydroclimate, with evidence of drought dating back thousands of years. However, our ability to monitor, attribute, forecast and manage drought is exposed as insufficient whenever a drought occurs. This paper summarises what is known about drought hazard, as opposed to the impacts of drought, in Australia and finds that, unlike other hydroclimatic hazards, we currently have very limited ability to tell when a drought will begin or end. Understanding, defining, monitoring, forecasting and managing drought is also complex due to the variety of temporal and spatial scales at which drought occurs and the diverse direct and indirect causes and consequences of drought. We argue that to improve understanding and management of drought, three key research challenges should be targeted: (1) defining and monitoring drought characteristics (i.e. frequency, start, duration, magnitude, and spatial extent) to remove confusion between drought causes, impacts and risks and better distinguish between drought, aridity, and water scarcity due to over-extractions; (2) documenting historical (instrumental and pre-instrumental) variation in drought to better understand baseline drought characteristics, enable more rigorous identification and attribution of drought events or trends, inform/evaluate hydrological and climate modelling activities and give insights into possible future drought scenarios; (3) improving the prediction and projection of drought characteristics with seasonal to multidecadal lead times and including more realistic modelling of the multiple factors that cause (or contribute to) drought so that the impacts of natural variability and anthropogenic climate change are accounted for and the reliability of long-term drought projections increases.
  •  
3.
  • Reeves, Jessica M., et al. (författare)
  • Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region : an OZ-INTIMATE compilation
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 74, s. 21-34
  • Tidskriftsartikel (refereegranskat)abstract
    • The Australian region spans some 600 of latitude and 500 of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 +/- 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Nino-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy