SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiendler Scharr A.) "

Sökning: WFRF:(Kiendler Scharr A.)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kulmala, M., et al. (författare)
  • General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 13061-13143
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  •  
2.
  • Kiendler-Scharr, A., et al. (författare)
  • Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 43:14, s. 7735-7744
  • Tidskriftsartikel (refereegranskat)abstract
    • In the atmosphere nighttime removal of volatile organic compounds is initiated to a large extent by reaction with the nitrate radical (NO3) forming organic nitrates which partition between gas and particulate phase. Here we show based on particle phase measurements performed at a suburban site in the Netherlands that organic nitrates contribute substantially to particulate nitrate and organic mass. Comparisons with a chemistry transport model indicate that most of the measured particulate organic nitrates are formed by NO3 oxidation. Using aerosol composition data from three intensive observation periods at numerous measurement sites across Europe, we conclude that organic nitrates are a considerable fraction of fine particulate matter (PM1) at the continental scale. Organic nitrates represent 34% to 44% of measured submicron aerosol nitrate and are found at all urban and rural sites, implying a substantial potential of PM reduction by NOx emission control.
  •  
3.
  • Crippa, M., et al. (författare)
  • Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 14:12, s. 6159-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.
  •  
4.
  • Carlsson, P. T. M., et al. (författare)
  • Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:5, s. 3147-3180
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO(2 )isomers, unimolecular reactions of nitrate RO(2 )radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12 h) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss.
  •  
5.
  • Donahue, N. M., et al. (författare)
  • Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:34, s. 13503-13508
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.
  •  
6.
  • Fountoukis, C., et al. (författare)
  • Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 14:17, s. 9061-9076
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe, focusing on the formation and chemical transformation of organic matter. Three periods representative of different seasons were simulated, corresponding to intensive field campaigns. An extensive set of AMS measurements was used to evaluate the model and, using factor-analysis results, gain more insight into the sources and transformations of organic aerosol (OA). Overall, the agreement be-tween predictions and measurements for OA concentration is encouraging, with the model reproducing two-thirds of the data (daily average mass concentrations) within a factor of 2. Oxygenated OA (OOA) is predicted to contribute 93% to total OA during May, 87% during winter and 96% during autumn, with the rest consisting of fresh primary OA (POA). Predicted OOA concentrations compare well with the observed OOA values for all periods, with an average fractional error of 0.53 and a bias equal to -0.07 (mean error = 0.9 mu g m(-3), mean bias =-0.2 mu g m(-3)). The model systematically underpredicts fresh POA at most sites during late spring and autumn (mean bias up to -0.8 mu g m(-3)). Based on results from a source apportionment algorithm running in parallel with PMCAMx, most of the POA originates from biomass burning (fires and residential wood combustion), and therefore biomass burning OA is most likely underestimated in the emission inventory. The sensitivity of POA predictions to the corresponding emissions' volatility distribution is discussed. The model performs well at all sites when the Positive Matrix Factorization (PMF)-estimated low-volatility OOA is compared against the OA with saturation concentrations of the OA surrogate species C* <= 0.1 mu g m(-3) and semivolatile OOA against the OA with C* > 0.1 mu g m(-3).
  •  
7.
  • Hallquist, Mattias, 1969, et al. (författare)
  • The formation, properties and impact of secondary organic aerosol: Current and emerging issues
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:14, s. 5155-5236
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.
  •  
8.
  • Novelli, A., et al. (författare)
  • Evaluation of OH and HO2 concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation chamber SAPHIR
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:15, s. 11409-11422
  • Tidskriftsartikel (refereegranskat)abstract
    • Several previous field studies have reported unexpectedly large concentrations of hydroxyl and hydroperoxyl radicals (OH and HO2, respectively) in forested environments that could not be explained by the traditional oxidation mechanisms that largely underestimated the observations. These environments were characterized by large concentrations of biogenic volatile organic compounds (BVOC) and low nitrogen oxide concentration. In isoprene-dominated environments, models developed to simulate atmospheric photochemistry generally underestimated the observed OH radical concentrations. In contrast, HO2 radical concentration showed large discrepancies with model simulations mainly in non-isoprene-dominated forested environments. An abundant BVOC emitted by lodgepole and ponderosa pines is 2-methyl- 3-butene-2-ol (MBO), observed in large concentrations for studies where the HO2 concentration was poorly described by model simulations. In this work, the photooxidation of MBO by OH was investigated for NO concentrations lower than 200 pptv in the atmospheric simulation chamber SAPHIR at Forschungszentrum Julich. Measurements of OH and HO2 radicals, OH reactivity (kO(H)), MBO, OH precursors, and organic products (acetone and formaldehyde) were used to test our current understanding of the OH-oxidation mechanisms for MBO by comparing measurements with model calculations. All the measured trace gases agreed well with the model results (within 15 %) indicating a well understood mechanism for the MBO oxidation by OH. Therefore, the oxidation of MBO cannot contribute to reconciling the unexplained high OH and HO2 radical concentrations found in previous field studies.
  •  
9.
  • Pang, J. Y. S., et al. (författare)
  • Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:13, s. 8497-8527
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxidation of limonene by the hydroxyl (OH) radical and ozone (O-3) was investigated in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) in experiments performed at different nitric oxide (NO) mixing ratios from nearly 0 up to 10 ppbv. For the experiments dominated by OH oxidation, the formaldehyde (HCHO) yield was experimentally determined and found to be (12 +/- 3), (13 +/- 3), and (32 +/- 5) % for experiments with low (similar to 0.1 ppbv), medium (similar to 0.3 ppbv), and high NO (5 to 10 ppbv), respectively. The yield in an ozonolysis-only experiment was (10 +/- 1) %, which agrees with previous laboratory studies. The experimental yield of the first-generation organic nitrates from limonene-OH oxidation is calculated as (34 +/- 5) %, about 11 % higher than the value in the Master Chemical Mechanism (MCM), which is derived from structure-activity relationships (SARs). Time series of measured radicals, trace-gas concentrations, and OH reactivity are compared to results from zero-dimensional chemical box model calculations applying MCM v3.3.1. Modeled OH reactivity is 5 to 10 s(-1) (25 % to 33 % of the OH reactivity at the start of the experiment) higher than measured values at the end of the experiments under all chemical conditions investigated, suggesting either that there are unaccounted loss processes of limonene oxidation products or that products are less reactive toward OH. In addition, model calculations underestimate measured hydroperoxyl radical (HO2) concentrations by 20 % to 90 % and overestimate organic peroxyl radical (RO2) concentrations by 50 % to 300 %. The largest deviations are found in low-NO experiments and in the ozonolysis experiment. An OH radical budget analysis, which uses only measured quantities, shows that the budget is closed in most of the experiments. A similar budget analysis for RO2 radicals suggests that an additional RO2 loss rate constant of about (1-6) x 10(-2) s(-1) for first-generation RO2 is required to match the measured RO2 concentrations in all experiments. Sensitivity model runs indicate that additional reactions converting RO2 to HO2 at a rate constant of about (1.7-3.0) x 10(-2) s(-1) would improve the model-measurement agreement of NOx, HO2, and RO2 concentrations and OH reactivity. Reaction pathways that could lead to the production of additional OH and HO2 are discussed, which include isomerization reactions of RO2 from the oxidation of limonene, different branching ratios for the reaction of RO2 with HO2, and a faster rate constant for RO2 recombination reactions. As the exact chemical mechanisms of the additional HO2 and OH sources could not be identified, further work needs to focus on quantifying organic product species and organic peroxy radicals from limonene oxidation.
  •  
10.
  • Priestley, Michael, et al. (författare)
  • Chemical characterisation of benzene oxidation products under high- and low-NOx conditions using chemical ionisation mass spectrometry
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:5, s. 3473-3490
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic hydrocarbons are a class of volatile organic compounds associated with anthropogenic activity and make up a significant fraction of urban volatile organic compound (VOC) emissions that contribute to the formation of secondary organic aerosol (SOA). Benzene is one of the most abundant species emitted from vehicles, biomass burning and industry. An iodide time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) and nitrate ToF-CIMS were deployed at the Julich Plant Atmosphere Chamber as part of a series of experiments examining benzene oxidation by OH under high- and low-NOx conditions, where a range of organic oxidation products were detected. The nitrate scheme detects many oxidation products with high masses, ranging from intermediate volatile organic compounds (IVOCs) to extremely low volatile organic compounds (ELVOCs), including C-12 dimers. In comparison, very few species with C->= 6 and O-> 8 were detected with the iodide scheme, which detected many more IVOCs and semi-volatile organic compounds (SVOCs) but very few ELVOCs and low volatile organic compounds (LVOCs). A total of 132 and 195 CHO
  •  
11.
  • Wu, R. R., et al. (författare)
  • Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:13, s. 10799-10824
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Julich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-offlight chemical ionization mass spectrometer using Br as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C-4 and C-5 products) and dimers (C-10 products) with 1-3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80% of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5% from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.
  •  
12.
  • Brownwood, B., et al. (författare)
  • Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes
  • 2021
  • Ingår i: Acs Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 785-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO(3)Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 +/- 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with similar to 50 mu g m(-3) inorganic seed aerosol and 2-5 mu g m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically similar to 100 ppb O-3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K-p similar to 10(-3) m(3) mu g(-1)), indicating an average volatility corresponding to a C-5 hydroxy hydroperoxy nitrate.
  •  
13.
  • Knote, C., et al. (författare)
  • Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART
  • 2011
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 4:4, s. 1077-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O-3 and NOx are well reproduced. SO2 is found to be overestimated, simulated PM2.5 and PM10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2-5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic aerosols scheme, aqueous-phase chemistry and improved aerosol boundary conditions. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.
  •  
14.
  • Morgan, W. T., et al. (författare)
  • Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components : airborne measurements in North-Western Europe
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:17, s. 8151-8171
  • Tidskriftsartikel (refereegranskat)abstract
    • A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50-100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.
  •  
15.
  • Rolletter, M., et al. (författare)
  • Investigation of the alpha-pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:18, s. 11635-11649
  • Tidskriftsartikel (refereegranskat)abstract
    • The photooxidation of the most abundant monoterpene, alpha-pinene, by the hydroxyl radical (OH) was investigated at atmospheric concentrations in the atmospheric simulation chamber SAPHIR. Concentrations of nitric oxide (NO) were below 120 pptv. Yields of organic oxidation products are determined from measured time series giving values of 0.11 +/- 0.05, 0.19 +/- 0.06, and 0.05 +/- 0.03 for formaldehyde, acetone, and pinonaldehyde, respectively. The pinonaldehyde yield is at the low side of yields measured in previous laboratory studies, ranging from 0.06 to 0.87. These studies were mostly performed at reactant concentrations much higher than observed in the atmosphere. Time series of measured radical and trace-gas concentrations are compared to results from model calculations applying the Master Chemical Mechanism (MCM) 3.3.1. The model predicts pinonaldehyde mixing ratios that are at least a factor of 4 higher than measured values. At the same time, modeled hydroxyl and hydroperoxy (HO2) radical concentrations are approximately 25 % lower than measured values. Vereecken et al. (2007) suggested a shift of the initial organic peroxy radical (RO2) distribution towards RO2 species that do not yield pinonaldehyde but produce other organic products. Implementing these modifications reduces the model-measurement gap of pinonaldehyde by 20 % and also improves the agreement in modeled and measured radical concentrations by 10 %. However, the chemical oxidation mechanism needs further adjustment to explain observed radical and pinonaldehyde concentrations. This could be achieved by adjusting the initial RO2 distribution, but could also be done by implementing alternative reaction channels of RO2 species that currently lead to the formation of pinonaldehyde in the model.
  •  
16.
  • Snider, J. R., et al. (författare)
  • Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo)
  • 2010
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 115, s. 11205-11205
  • Tidskriftsartikel (refereegranskat)abstract
    • Four cloud condensation nuclei (CCN) instruments were used to sample size-selected particles prepared at the Leipzig Aerosol Cloud Interaction Simulator facility. Included were two Wyoming static diffusion CCN instruments, the continuous flow instrument built by Droplet Measurement Technologies, and the continuous flow Leipzig instrument. The aerosols were composed of ammonium sulfate, levoglucosan, levoglucosan and soot, and ammonium hydrogen sulfate and soot. Comparisons are made among critical supersaturation values from the CCN instruments and derived from measurements made with a humidified tandem differential mobility system. The comparison is quite encouraging: with few exceptions the reported critical supersaturations agree within known experimental uncertainty limits. Also reported are CCN- and hygroscopicity-based estimates of the soot particles' solute fraction. Relative differences between these are as large as 40%, but an error analysis demonstrates that agreement within experimental uncertainty is achieved. We also analyze data from the Droplet Measurement Technologies and the two Wyoming static diffusion instruments for evidence of size distribution broadening and investigate levoglucosan particle growth kinetics in the Wyoming CCN instrument.
  •  
17.
  • Zhao, D. F., et al. (författare)
  • Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei
  • 2015
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 42:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol components (SOA) contribute significantly to the activation of cloud condensation nuclei (CCN) in the atmosphere. The CCN activity of internally mixed submicron SOA particles is often parameterized assuming a size-independent single-hygroscopicity parameter κ. In the experiments done in a large atmospheric reactor (SAPHIR, Simulation of Atmospheric PHotochemistry In a large Reaction chamber, Jülich), we consistently observed size-dependent κ and particle composition for SOA from different precursors in the size range of 50nm–200nm. Smaller particles had higher κ and a higher degree of oxidation, although all particles were formed from the same reaction mixture. Since decreasing volatility and increasing hygroscopicity often covary with the degree of oxidation, the size dependence of composition and hence of CCN activity can be understood by enrichment of higher oxygenated, low-volatility hygroscopic compounds in smaller particles. Neglecting the size dependence of κ can lead to significant bias in the prediction of the activated fraction of particles during cloud formation.
  •  
18.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:8, s. 20311-20350
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. Several experiments with exclusively anthro- 5 pogenic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μgm−3. The yields (0.5–9 %) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The 10 reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Further 15 more, the OH measurements in combination with the derived yields for anthropogenic SOA enabled application of a simplified model to calculate the chemical turnover of the anthropogenic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (8 %) up to significant fraction (>50 %) providing a suitable range to study the effect of aerosol 20 composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86–0.94). The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of anthropogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. A strong positive correlation was found between 25 changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. This change in volatility under dark conditions is likely due to chemical or morphological changes not affecting O/C.
  •  
19.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2013
  • Ingår i: Atmos. Chem. Phys.. - : Copernicus Publications. - 1680-7324. ; 13:5, s. 2837-2855
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m−3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86–0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. The SOA yields, O/C, and f44 (the mass fraction of CO2+ ions in the mass spectra which can be considered as a measure of carboxylic groups) in the mixed photo-chemical experiments could be described as linear combinations of the corresponding properties of the pure systems. For VFR there was in addition an enhancement effect, making the mixed aerosol significantly less volatile than what could be predicted from the pure systems. A strong positive correlation was found between changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. Thus, this change in volatility under dark conditions as well as the anthropogenic enhancement is due to chemical or morphological changes not affecting O/C.
  •  
20.
  • Guo, Y. D., et al. (författare)
  • Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11323-11346
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime NO3-initiated oxidation of biogenic volatile organic compounds (BVOCs) such as monoterpenes is important for the atmospheric formation and growth of secondary organic aerosol (SOA), which has significant impact on climate, air quality, and human health. In such SOA formation and growth, highly oxygenated organic molecules (HOM) may be crucial, but their formation pathways and role in aerosol formation have yet to be clarified. Among monoterpenes, limonene is of particular interest for its high emission globally and high SOA yield. In this work, HOM formation in the reaction of limonene with nitrate radical (NO3) was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). About 280 HOM products were identified, grouped into 19 monomer families, 11 dimer families, and 3 trimer families. Both closed-shell products and open-shell peroxy radicals (RO2 center dot) 2 were observed, and many of them have not been reported previously. Monomers and dimers accounted for 47% and 47% of HOM concentrations, respectively, with trimers making up the remaining 6 %. In the most abundant monomer families, C10H15-17NO6-14, carbonyl products outnumbered hydroxyl products, indicating the importance of RO2 center dot termination by unimolecular dissociation. Both RO2 center dot autoxidation and alkoxy-peroxy pathways were found to be important processes leading to HOM. Time-dependent concentration profiles of monomer products containing nitrogen showed mainly second-generation formation patterns. Dimers were likely formed via the accretion reaction of two monomer RO2 center dot , and HOM-trimers via the accretion reaction between monomer RO2 center dot and dimer RO2 center dot. Trimers are suggested to play an important role in new particle formation (NPF) observed in our experiment. A HOM yield of 1.5%(+1.7%)(-0.7%) was estimated considering only first-generation products. SOA mass growth could be reasonably explained by HOM condensation on particles assuming irreversible uptake of ultra-low volatility organic compounds (ULVOCs), extremely low volatility organic compounds (ELVOCs), and low volatility organic compounds (LVOCs). This work provides evidence for the important role of HOM formed via the limonene +NO3 reaction in NPF and growth of SOA particles.
  •  
21.
  • Luo, H., et al. (författare)
  • Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 23:13, s. 7297-7319
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it is conducive to ultimately assess the impact of SOA on air quality and climate change. In this study, gas-phase HOMs formed from the reaction of limonene with OH radicals in photooxidation were investigated with SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber), using a time-of-flight chemical ionization mass spectrometer with nitrate reagent ion (NO3--CIMS). A large number of HOMs, including monomers (C9-10) and dimers (C17-20), were detected and classified into various families. Both closed-shell products and open-shell peroxy radicals (RO2) were identified under low NO (0.06-0.1 ppb) and high NO conditions (17 ppb). C-10 monomers are the most abundant HOM products and account for over 80% total HOMs. Closed-shell C-10 monomers were formed from a two peroxy radical family, C10H15Ox center dot (x = 6-15) and C10H17Ox center dot ( x = 6-15), and their respective termination reactions with NO, RO2, and HO2. While C10H17Ox center dot is likely formed by OH addition to C10H16, the dominant initial step of limonene plus OH, C10H15Ox center dot, is likely formed via H abstraction by OH center dot C10H15Ox center dot and related products contributed 41% and 42% of C-10 HOMs at low and high NO, demonstrating that the H-abstraction pathways play a significant role in HOM formation in the reaction of limonene plus OH. Combining theoretical kinetic calculations, structure-activity relationships (SARs), data from the literature, and the observed RO2 intensities, we proposed tentative mechanisms of HOM formation from both pathways. We further estimated the molar yields of HOMs to be 1.97(-1.06)(+2.52) % and 0.29(-0.16)(+0.38)% at low and high NO, respectively. Our study highlights the importance of H abstraction by OH and provides the yield and tentative pathways in the OH oxidation of limonene to simulate the HOM formation and assess the role of HOMs in SOA formation.
  •  
22.
  • Roldin, Pontus, et al. (författare)
  • Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Julich plant atmosphere chamber
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 15:18, s. 10777-10798
  • Tidskriftsartikel (refereegranskat)abstract
    • We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Julich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R-2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.
  •  
23.
  • Wu, Cheng, 1985, et al. (författare)
  • Impacts of soil moisture on de novo monoterpene emissions from European beech, Holm oak, Scots pine, and Norway spruce
  • 2015
  • Ingår i: Biogeosciences. - 1726-4170 .- 1726-4189. ; 12, s. 177-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Impacts of soil moisture on de novo monoterpene (MT) emissions from Holm oak, European beech, Scots pine, and Norway spruce were studied in laboratory experiments. The volumetric water content of the soil, Θ, was used as the reference quantity to parameterize the dependency of MT emissions on soil moisture and to characterize the severity of the drought. When θ dropped from 0.4m3 ×m-3 to ∼0.2m3 ×m-3 slight increases of de novo MT emissions were observed but with further progressing drought the emissions decreased to almost zero. In most cases the increases of MT emissions observed under conditions of mild drought were explainable by increases of leaf temperature due to lowered transpirational cooling. When Θ fell below certain thresholds, MT emissions decreased simultaneously with 2 and the relationship between Θ and MT emissions was approximately linear. The thresholds of θ (0.044-0.19m3 ×m-3) were determined, as well as other parameters required to describe the soil moisture dependence of de novo MT emissions for application in the Model of Emissions of Gases and Aerosols from Nature, MEGAN. A factorial approach was found appropriate to describe the impacts of 2, temperature, and light. Temperature and θ influenced the emissions largely independently from each other, and, in a similar manner, light intensity and θ acted independently on de novo MT emissions. The use of θ as the reference quantity in a factorial approach was tenable in predicting constitutive de novo MT emissions when θ changed on a time scale of days. Empirical parameterization with θ as a reference was only unsuccessful when soil moisture changed rapidly
  •  
24.
  • Zhao, D. F., et al. (författare)
  • Environmental conditions regulate the impact of plants on cloud formation
  • 2017
  • Ingår i: Nature Communications. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.
  •  
25.
  • Emanuelsson, Eva U., et al. (författare)
  • Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by Photo-Oxidation of Selected Terpene Mixtures
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:11, s. 6168-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine T-VFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. T-VFR0.5 increased by 0.3 +/- 0.1% (ca. 1 K), while the steepness increased by 0.9 +/- 0.3% per hour of 1 x 10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.
  •  
26.
  • Flores, J. M., et al. (författare)
  • Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:11, s. 5793-5806
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are as yet still poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC, was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Julich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity-enhanced spectrometer for aerosol optical extinction measurements in the UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high-resolution time-of-flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (alpha-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d(10)), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone/OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d(10) showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after approximately the same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have a significant amount of semivolatile components. The influence of anthropogenic VOCs on the oxygenated organic aerosol as well as the atmospheric implications are discussed.
  •  
27.
  •  
28.
  • McFiggans, Gordon, et al. (författare)
  • Secondary organic aerosol reduced by mixture of atmospheric vapours
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 565:7741, s. 587-593
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).
  •  
29.
  • Saathoff, H., et al. (författare)
  • Temperature dependence of yields of secondary organic aerosols from the ozonolysis of a-pinene and limonene
  • 2008
  • Ingår i: Atmos. Chem. Phys. Discuss.. ; 8, s. 15595-15664
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Secondary organic aerosol (SOA) formation has been investigated as a function of temperature and humidity for the ozone-initiated reaction of the two monoterpenes a-pinene (243–313 K) and limonene (253–313 K) using the 84.5 m3 aerosol chamber AIDA. This paper gives an overview of the measurements done and presents parameters specifically useful for aerosol yield calculations. The ozonolysis reaction, selected oxidation products and subsequent aerosol formation were followed using several analytical techniques for both gas and condensed phase characterisation. The effective densities of the SOA were determined by comparing mass and volume size distributions to (1.25±0.10) g cm-3 for a-pinene and (1.3±0.2) g cm-3 for limonene. The detailed aerosol dynamics code COSIMA-SOA proved to be essential for a comprehensive evaluation of the experimental results and for providing parameterisations directly applicable within atmospheric models. The COSIMA-assisted analysis succeeded to reproduce the observed time evolutions of SOA total mass, number and size distributions by adjusting the following properties of two oxidation product proxies: individual yield parameters (ai), partitioning coefficients (Ki), vapour pressures (pi) and effective accommodation coefficients (?i). For these properties temperature dependences were derived and parameterised. Vapour pressures and partitioning coefficients followed classical Clausius-Clapeyron temperature dependences. From this relationship enthalpies of vaporisation were derived for the two more and less volatile product proxies of a-pinene: (59±8) kJ mol-1 and (24±9) kJ mol-1, and limonene: (55±14) kJ mol-1 and (25±12) kJ mol-1. The more volatile proxy components had a notably low enthalpy of vaporisation while the less volatile proxy components gave enthalpies of vaporisation comparable with those of typical products from a-pinene oxidation, e.g. pinonaldehyde and pinonic acid.
  •  
30.
  • Saathoff, H., et al. (författare)
  • Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene
  • 2009
  • Ingår i: Atmos. Chem. Phys.. ; 9, s. 1551-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation has been investigated as a function of temperature and humidity for the ozone-initiated reaction of the two monoterpenes α-pinene (243–313 K) and limonene (253–313 K) using the 84.5 m3 aerosol chamber AIDA. This paper gives an overview of the measurements done and presents parameters specifically useful for aerosol yield calculations. The ozonolysis reaction, selected oxidation products and subsequent aerosol formation were followed using several analytical techniques for both gas and condensed phase characterisation. The effective densities of the SOA were determined by comparing mass and volume size distributions to (1.25±0.10) g cm−3 for α-pinene and (1.3±0.2) g cm−3 for limonene. The detailed aerosol dynamics code COSIMA-SOA proved to be essential for a comprehensive evaluation of the experimental results and for providing parameterisations directly applicable within atmospheric models. The COSIMA-assisted analysis succeeded to reproduce the observed time evolutions of SOA total mass, number and size distributions by adjusting the following properties of two oxidation product proxies: individual yield parameters (αi), partitioning coefficients (Ki), vapour pressures (pi) and effective accommodation coefficients (γi). For these properties temperature dependences were derived and parameterised. Vapour pressures and partitioning coefficients followed classical Clausius – Clapeyron temperature dependences. From this relationship enthalpies of vaporisation were derived for the two more and less volatile product proxies of α-pinene: (59±8) kJ mol−1 and (24±9) kJ mol−1, and limonene: (55±14) kJ mol−1 and (25±12) kJ mol−1. The more volatile proxy components had a notably low enthalpy of vaporisation while the less volatile proxy components gave enthalpies of vaporisation comparable with those of typical products from α-pinene oxidation, e.g. pinonaldehyde and pinonic acid.
  •  
31.
  • Tillmann, R., et al. (författare)
  • Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene
  • 2010
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:15, s. 7057-7072
  • Tidskriftsartikel (refereegranskat)abstract
    • The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA pPA0 to the range of 0.01–0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3 μg−1 and the total mass yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy