SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kimball J. S.) "

Sökning: WFRF:(Kimball J. S.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Natali, S. M., et al. (författare)
  • Large loss of CO2 in winter observed across the northern permafrost region
  • 2019
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 9:11, s. 852-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
  •  
4.
  •  
5.
  • Penney, J. I., et al. (författare)
  • The environments of luminous radio-WISE selected infrared galaxiess
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 483:1, s. 514-528
  • Tidskriftsartikel (refereegranskat)abstract
    • We have observed the environments of a population of 33 heavily dust obscured, ultraluminous, high-redshift galaxies, selected using Wide-Field Infrared Survey Explorer (WISE) and NRAO 1.4 GHz VLA Sky Survey atz > 1.3 with the infrared array camera on the Spitzer Space Telescope over 5.12 arcmin x 5.12 arcmin fields. Colour selections are used to quantify any potential overdensities of companion galaxies in these fields. We find no significant excess of galaxies with the standard colour selection for IRAC colours of [3.6] - [4.5] > -0.1 consistent with galaxies atz > 1.3 across the whole fields with respect to wide-area Spitzer comparison fields, but there is a > 2 sigma statistical excess within 0.25 arcmin of the central radio-WISE galaxy. Using a colour selection of [3.6] - [4.5] > 0.4, 0.5 magnitudes redder than the standard method of selecting galaxies atz > 1.3, we find a significant overdensity, in which 76 per cent (33 per cent) of the 33 fields have a surface density greater than the 3 sigma (5 sigma) level. There is a statistical excess of these redder galaxies within 0.5 arcmin, rising to a central peak similar to 2-4 times the average density. This implies that these galaxies are statistically linked to the radio-WISE selected galaxy, indicating similar structures to those traced by red galaxies around radio-loud active galactic nuclei.
  •  
6.
  • Wu, X. C., et al. (författare)
  • Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth
  • 2022
  • Ingår i: Earth's Future. - : American Geophysical Union (AGU). - 2328-4277. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree resistance to extreme droughts and post-drought recovery are sensitive to the drought timing. However, how the bioclimatic sensitivity of tree growth may vary with the timing and order of extreme droughts and wetness is still poorly understood. Here, we quantified the bioclimatic sensitivity of tree growth in the period of 1951-2013 under different seasonal extreme drought/wetness regimes over the extra-tropical Northern Hemisphere, using 1,032 tree ring chronologies from 121 gymnosperm and angiosperm species. We found a negative asymmetry in tree growth under regimes with seasonal extreme droughts. With extreme drought, tree growth in arid and temperate dry regions is more negatively impacted by pre-growing-season (PGS) extreme droughts. Clade-wise, angiosperms are more sensitive to PGS water availability, and gymnosperms to legacy effects of the preceding tree growth conditions in temperate dry and humid regions. Our finding of divergent bioclimatic legacy effects underscores contrasting trends in forest responses to drought across different ecoregions and functional groups in a more extreme climate.
  •  
7.
  • Li, Y., et al. (författare)
  • Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems
  • 2023
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 13, s. 182-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors reveal complex drought recovery responses to phenology shifts, in that early spring can shorten or lengthen recovery, while delayed spring following drought events delays it. These effects suggest a need to incorporate phenology aspects into resilience models. The time required for an ecosystem to recover from severe drought is a key component of ecological resilience. The phenology effects on drought recovery are, however, poorly understood. These effects centre on how phenology variations impact biophysical feedbacks, vegetation growth and, ultimately, recovery itself. Using multiple remotely sensed datasets, we found that more than half of ecosystems in mid- and high-latitudinal Northern Hemisphere failed to recover from extreme droughts within a single growing season. Earlier spring phenology in the drought year slowed drought recovery when extreme droughts occurred in mid-growing season. Delayed spring phenology in the subsequent year slowed drought recovery for all vegetation types (with importance of spring phenology ranging from 46% to 58%). The phenology effects on drought recovery were comparable to or larger than other well-known postdrought climatic factors. These results strongly suggest that the interactions between vegetation phenology and drought must be incorporated into Earth system models to accurately quantify ecosystem resilience.
  •  
8.
  • Toreti, A, et al. (författare)
  • Narrowing uncertainties in the effects of elevated CO2 on crops
  • 2020
  • Ingår i: Nature Food. - : Springer Science and Business Media LLC. - 2662-1355. ; 1, s. 775-782
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.
  •  
9.
  • Watts, J. D., et al. (författare)
  • A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:7, s. 1961-1980
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (R-eco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over pan-Arctic eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO2 and CH4 emissions using in situ or remote sensing and reanalysis-based climate data as inputs. The TCF model simulations using in situ data explained >70% of the r(2) variability in the 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) Records accounted for approximately 69% and 75% of the respective r(2) variability in the tower CO2 and CH4 records, with corresponding RMSE uncertainties of <= 1.3 gCm(-2) d(-1) (CO2) and 18.2 mg Cm-2 d(-1) (CH4). Although the estimated annual CH4 emissions were small (<18 gCm(-2) yr(-1)) relative to R-eco (>180 gCm(-2) yr(-1)), they reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 +/- 128 gCO(2)eqm(-2) yr(-1) when considered over a 100 year time span. This model evaluation indi-cates a strong potential for using the TCF model approach to document landscape-scale variability in CO2 and CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.
  •  
10.
  • Zona, Donatella, et al. (författare)
  • Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.
  •  
11.
  • Kuligowski, E., et al. (författare)
  • Evacuation modelling for bushfire : the WUI-NITY simulation platform
  • 2022
  • Ingår i: Australian Journal of Emergency Management. - 1324-1540. ; 37:4, s. 40-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of people who live in bushfire-prone areas around the world is growing. In Australia, in the states of Victoria and New South Wales, over 1.5 million people live in areas rated as high to extreme bushfire risk in (SGS Economics and Planning 2019). As effects of climate change increase the size and severity of bushfires, and a greater number of people move into these at-risk areas, there is a growing imperative to understand the likely evacuation outcomes of bushfireprone communities under various fire scenarios. This paper introduces a freely available simulation platform called WUI-NITY that can be used by evacuation planners and decisionmakers to forecast evacuation behaviour within affected areas, and in turn, better prepare for and respond to future bushfire events.
  •  
12.
  • McGuire, A. D., et al. (författare)
  • An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:8, s. 3185-3204
  • Tidskriftsartikel (refereegranskat)abstract
    • Although Arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990 and 2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of flux observations and inversion models indicate that the annual exchange of CO2 between Arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that Arctic tundra has acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 A degrees C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Some of the process models indicate that this occurred because net primary production increased more in response to warming than heterotrophic respiration. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from Arctic tundra have increased from the 1990s to 2000s because of the sensitivity of CH4 emissions to warmer temperatures. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that Arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr(-1) (uncertainty between a sink of 291 Tg C yr(-1) and a source of 80 Tg C yr(-1)) and a source of CH4 to the atmosphere of 19 Tg C yr(-1) (uncertainty between sources of 8 and 29 Tg C yr(-1)). The suite of analyses conducted in this study indicate that it is important to reduce uncertainties in the observations, process-based models, and inversions in order to better understand the degree to which Arctic tundra is influencing atmospheric CO2 and CH4 concentrations. The reduction of uncertainties can be accomplished through (1) the strategic placement of more CO2 and CH4 monitoring stations to reduce uncertainties in inversions, (2) improved observation networks of ground-based measurements of CO2 and CH4 exchange to understand exchange in response to disturbance and across gradients of climatic and hydrological variability, and (3) the effective transfer of information from enhanced observation networks into process-based models to improve the simulation of CO2 and CH4 exchange from Arctic tundra to the atmosphere.
  •  
13.
  •  
14.
  • Ronchi, E., et al. (författare)
  • The verification of wildland–urban interface fire evacuation models
  • 2023
  • Ingår i: Natural Hazards. - : Springer Science and Business Media LLC. - 0921-030X .- 1573-0840. ; 117:2, s. 1493-1519
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces a protocol for the verification of multi-physics wildfire evacuation models, including a set of tests used to ensure that the conceptual modelling representation of each modelling layer is accurately implemented, as well as the interactions between different modelling layers and sub-models (wildfire spread, pedestrian movement, traffic evacuation, and trigger buffers). This work presents a total of 24 verification tests, including (1) 4 tests related to pedestrians, (2) 15 tests for traffic evacuation, (3) 5 tests concerning the interaction between different modelling layers, along with 5 tests for wildfire spread and trigger buffers. The evacuation tests are organized in accordance with different core components related to evacuation modelling, namely Population, Pre-evacuation, Movement, Route/destination selection, Flow constraints, Events, Wildfire spread and Trigger buffers. A reporting template has also been developed to facilitate the application of the verification testing protocol. An example application of the testing protocol has been performed using an open wildfire evacuation modelling platform called WUI-NITY and its associated trigger buffer model k-PERIL. The verification testing protocol is deemed to improve the credibility of wildfire evacuation model results and stimulate future modelling efforts in this domain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy