SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kinch Kjartan) "

Sökning: WFRF:(Kinch Kjartan)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Horgan, Briony, et al. (författare)
  • Mineralogy, Morphology, and Emplacement History of the Maaz Formation on the Jezero Crater Floor From Orbital and Rover Observations
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The first samples collected by the Perseverance rover on the Mars 2020 mission were from the Maaz formation, a lava plain that covers most of the floor of Jezero crater. Laboratory analysis of these samples back on Earth would provide important constraints on the petrologic history, aqueous processes, and timing of key events in Jezero crater. However, interpreting these samples requires a detailed understanding of the emplacement and modification history of the Maaz formation. Here we synthesize rover and orbital remote sensing data to link outcrop-scale interpretations to the broader history of the crater, including Mastcam-Z mosaics and multispectral images, SuperCam chemistry and reflectance point spectra, Radar Imager for Mars' subsurface eXperiment ground penetrating radar, and orbital hyperspectral reflectance and high-resolution images. We show that the Maaz formation is composed of a series of distinct members corresponding to basaltic to basaltic-andesite lava flows. The members exhibit variable spectral signatures dominated by high-Ca pyroxene, Fe-bearing feldspar, and hematite, which can be tied directly to igneous grains and altered matrix in abrasion patches. Spectral variations correlate with morphological variations, from recessive layers that produce a regolith lag in lower Maaz, to weathered polygonally fractured paleosurfaces and crater-retaining massive blocky hummocks in upper Maaz. The Maaz members were likely separated by one or more extended periods of time, and were subjected to variable erosion, burial, exhumation, weathering, and tectonic modification. The two unique samples from the Maaz formation are representative of this diversity, and together will provide an important geochronological framework for the history of Jezero crater.
  •  
2.
  • Isoz, Oscar, et al. (författare)
  • Interference from terrestrial sources and its impact on the GRAS GPS radio occultation receiver
  • 2014
  • Ingår i: Radio Science. - 0048-6604 .- 1944-799X. ; 49:1, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that terrestrial GPS/Global Navigation Satellite Systems (GNSS) receivers are vulnerable and have suffered from intentional and unintentional interference sources. Unfortunately, space-based GPS/GNSS receivers are not exempt from radio frequency interference originating from the Earth. This paper explores data recorded by the GNSS Receiver for Atmospheric Sounding (GRAS) instrument onboard MetOp-A in September 2007, which is assumed to be representative of the typical environment for GPS/GNSS instrumentation in LEO orbit. Within these data it is possible to detect both pulsed interference and variations in the background noise. One plausible source of the pulsed interference is identified. We also show that neither the pulsed interference nor the variations in the background noise degrades the performance of the higher level products from GRAS.
  •  
3.
  • Sun, Vivian Z., et al. (författare)
  • Overview and Results From the Mars 2020 Perseverance Rover's First Science Campaign on the Jezero Crater Floor
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Máaz and Séítah formations and summarizes the results of the campaign between sols 100–379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Máaz and Séítah formations are igneous in origin and composed of five and two geologic members, respectively. The Séítah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Máaz formation likely represents a separate series of lava flows emplaced after Séítah. The Máaz and Séítah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Máaz-Séítah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy