SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kis S. A.) "

Sökning: WFRF:(Kis S. A.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Ferrari, A. C., et al. (författare)
  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:11, s. 4598-4810
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
  •  
6.
  • Abend, M., et al. (författare)
  • Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 degrees C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in >= 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 degrees C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 degrees C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 degrees C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
  •  
7.
  • Abend, M., et al. (författare)
  • RENEB Inter-Laboratory Comparison 2021 : The Gene Expression Assay
  • 2023
  • Ingår i: Radiation Research. - 0033-7587 .- 1938-5404. ; 199:6, s. 598-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Early and high-throughput individual dose estimates are essential following large-scale radiation exposure events. In the context of the Running the European Network for Biodosimetry and Physical Dosimetry (RENEB) 2021 exercise, gene expression assays were conducted and their corresponding performance for dose-assessment is presented in this publication. Three blinded, coded whole blood samples from healthy donors were exposed to 0, 1.2 and 3.5 Gy X-ray doses (240 kVp, 1 Gy/min) using the X-ray source Yxlon. These exposures correspond to clinically relevant groups of unexposed, low dose (no severe acute health effects expected) and high dose exposed individuals (requiring early intensive medical health care). Samples were sent to eight teams for dose estimation and identification of clinically relevant groups. For quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray analyses, samples were lysed, stored at 20°C and shipped on wet ice. RNA isolations and assays were run in each laboratory according to locally established protocols. The time-to-result for both rough early and more precise later reports has been documented where possible. Accuracy of dose estimates was calculated as the difference between estimated and reference doses for all doses (summed absolute difference, SAD) and by determining the number of correctly reported dose estimates that were defined as ±0.5 Gy for reference doses <2.5 Gy and ±1.0 Gy for reference doses >3 Gy, as recommended for triage dosimetry. We also examined the allocation of dose estimates to clinically/diagnostically relevant exposure groups. Altogether, 105 dose estimates were reported by the eight teams, and the earliest report times on dose categories and estimates were 5 h and 9 h, respectively. The coefficient of variation for 85% of all 436 qRT-PCR measurements did not exceed 10%. One team reported dose estimates that systematically deviated several-fold from reported dose estimates, and these outliers were excluded from further analysis. Teams employing a combination of several genes generated about two-times lower median SADs (0.8 Gy) compared to dose estimates based on single genes only (1.7 Gy). When considering the uncertainty intervals for triage dosimetry, dose estimates of all teams together were correctly reported in 100% of the 0 Gy, 50% of the 1.2 Gy and 50% of the 3.5 Gy exposed samples. The order of dose estimates (from lowest to highest) corresponding to three dose categories (unexposed, low dose and highest exposure) were correctly reported by all teams and all chosen genes or gene combinations. Furthermore, if teams reported no exposure or an exposure >3.5 Gy, it was always correctly allocated to the unexposed and the highly exposed group, while low exposed (1.2 Gy) samples sometimes could not be discriminated from highly (3.5 Gy) exposed samples. All teams used FDXR and 78.1% of correct dose estimates used FDXR as one of the predictors. Still, the accuracy of reported dose estimates based on FDXR differed considerably among teams with one team's SAD (0.5 Gy) being comparable to the dose accuracy employing a combination of genes. Using the workflow of this reference team, we performed additional experiments after the exercise on residual RNA and cDNA sent by six teams to the reference team. All samples were processed similarly with the intention to improve the accuracy of dose estimates when employing the same workflow. Re-evaluated dose estimates improved for half of the samples and worsened for the others. In conclusion, this inter-laboratory comparison exercise enabled (1) identification of technical problems and corrections in preparations for future events, (2) confirmed the early and high-throughput capabilities of gene expression, (3) emphasized different biodosimetry approaches using either only FDXR or a gene combination, (4) indicated some improvements in dose estimation with FDXR when employing a similar methodology, which requires further research for the final conclusion and (5) underlined the applicability of gene expression for identification of unexposed and highly exposed samples, supporting medical management in radiological or nuclear scenarios. 
  •  
8.
  • Akgul, M, et al. (författare)
  • Diagnostic approach in TFE3-rearranged renal cell carcinoma: a multi-institutional international survey
  • 2021
  • Ingår i: Journal of clinical pathology. - : BMJ. - 1472-4146 .- 0021-9746. ; 74:5, s. 291-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factor E3-rearranged renal cell carcinoma (TFE3-RCC) has heterogenous morphologic and immunohistochemical (IHC) features.131 pathologists with genitourinary expertise were invited in an online survey containing 23 questions assessing their experience on TFE3-RCC diagnostic work-up.Fifty (38%) participants completed the survey. 46 of 50 participants reported multiple patterns, most commonly papillary pattern (almost always 9/46, 19.5%; frequently 29/46, 63%). Large epithelioid cells with abundant cytoplasm were the most encountered cytologic feature, with either clear (almost always 10/50, 20%; frequently 34/50, 68%) or eosinophilic (almost always 4/49, 8%; frequently 28/49, 57%) cytology. Strong (3+) or diffuse (>75% of tumour cells) nuclear TFE3 IHC expression was considered diagnostic by 13/46 (28%) and 12/47 (26%) participants, respectively. Main TFE3 IHC issues were the low specificity (16/42, 38%), unreliable staining performance (15/42, 36%) and background staining (12/42, 29%). Most preferred IHC assays other than TFE3, cathepsin K and pancytokeratin were melan A (44/50, 88%), HMB45 (43/50, 86%), carbonic anhydrase IX (41/50, 82%) and CK7 (32/50, 64%). Cut-off for positive TFE3 fluorescent in situ hybridisation (FISH) was preferably 10% (9/50, 18%), although significant variation in cut-off values was present. 23/48 (48%) participants required TFE3 FISH testing to confirm TFE3-RCC regardless of the histomorphologic and IHC assessment. 28/50 (56%) participants would request additional molecular studies other than FISH assay in selected cases, whereas 3/50 participants use additional molecular cases in all cases when TFE3-RCC is in the differential.Optimal diagnostic approach on TFE3-RCC is impacted by IHC and/or FISH assay preferences as well as their conflicting interpretation methods.
  •  
9.
  • Pham, M. K., et al. (författare)
  • A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385)
  • 2008
  • Ingår i: APPLIED RADIATION AND ISOTOPES. - : Elsevier BV. - 1872-9800 .- 0969-8043. ; 66:11, s. 1711-1717
  • Konferensbidrag (refereegranskat)abstract
    • A new Certified Reference Material (CRM) for radionuclides in sediment (IAEA-385) is described and the results of the certification process are presented. Eleven radionuclides (K-40, Cs-137, Ra-226, Ra-228, Th-230, Th-232, U-234, U-238, Pu-238, Pu239+240 and Am-241) have been certified and information mass activities with 95% confidence intervals are given for seven other radionuclides (Sr-90, Pb-210(Po-210), U-235, Pu-239, Pu-240 and Pu-241). Results for less frequently reported radionuclides (Co-60, Tc-99, Cs-134, Eu-155, Ra-224 and Np-239) and information on some activity and mass ratios are also reported. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in sediment samples, for the development and validation of analytical methods and for training purposes. (C) 2008 IAEA. Published by Elsevier Ltd. All rights reserved.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
14.
  • Emri, M., et al. (författare)
  • Software development framework supporting multimodal tomographic imaging
  • 2007
  • Ingår i: 2006 IEEE Nuclear Science Symposium Conference Record. - : IEEE. - 1424405610 - 9781424405619 ; , s. 1857-1859
  • Konferensbidrag (refereegranskat)abstract
    • Engineers specialized in multimodal tomography regularly face a wide scale of programming tasks requiring an integrated software system to ensure cost efficiency. Accordingly, a software development framework has been worked out comprising libraries for cluster-based data acquisition, image reconstruction, management of data files and complex multimodal volumetric visualization. This framework enabled us to develop complex software for our miniPET project [1]. This software contains a graphical application integrating data acquisition, cluster monitoring, event sorting, image reconstruction, interactive image processing tools for advanced multimodal visualization. It also contains utilities to solve these tasks without graphical user interface. The components of our acquisition program can run on embedded Linux systems making new ways to develop any other types of data acquisition software that uses embedded Linux systems. A versatile development framework is developed containing specific libraries and special file formats that support multimodal tomography. This framework was successfully used to elaborate our complex miniPET software.
  •  
15.
  • Hegyesi, G., et al. (författare)
  • Ethernet based distributed data acquisition system for a small animal PET
  • 2006
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 53:4, s. 2112-2117
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the design of a small animal PET scanner being developed at our institutes. The existing setup is the first version of the miniPET machine consisting of four detector modules. Each detector module consists of an 8 x 8 LSO scintillator crystal block, a position sensitive photomultiplier, a digitizer including a digital signal processing board and an Ethernet interface board. There is no hardware coincidence detection implemented in the system and coincidence is determined based on a time stamp attached to every event by a digital CFD algorithm. The algorithm is implemented in the digital signal processing board and generates a time stamp with a coincidence resolution of less than 2 us. The data acquisition system is based on Ethernet network and is highly scalable in size and performance.
  •  
16.
  • Kis, S. A., et al. (författare)
  • Performance Characteristics of a miniPET Scanner Dedicated to Small Animal Imaging
  • 2005
  • Ingår i: 2005 IEEE Nuclear Science Symposium Conference Record. - 0780392213 - 9780780392212 ; , s. 1645-1648
  • Konferensbidrag (refereegranskat)abstract
    • An easy to scale up modular PET scanner was developed for imaging small animals. Energy resolution, spatial resolution and count rate performance were determined as system parameters. The configuration provided an average energy resolution of 19.6 % and the image resolution ranges was 1.5 to 2.3 mm in radial direction. The sensitivity of the miniPET was 1.08 cps/kBq as determined using a point source. In addition, results of rat brain scan performed with FDG are given to characterize imaging capability of the system. The displayed data document that the miniPET scanner supports good quality brain imaging of small animals.
  •  
17.
  • Ma, L, et al. (författare)
  • SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth
  • 2014
  • Ingår i: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 5, s. e1483-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sirtuins are NAD+ dependent deacetylases and/or ADP-ribosyl transferases active on histone and non-histone substrates. The first sirtuin was discovered as a transcriptional repressor of the mating-type-loci (Silent Information Regulator sir2) in the budding yeast, where it was shown to extend yeast lifespan. Seven mammalian sirtuins (SIRT1-7) have been now identified with distinct subcellular localization, enzymatic activities and substrates. These enzymes regulate cellular processes such as metabolism, cell survival, differentiation, DNA repair and they are implicated in the pathogenesis of solid tumors and leukemias. The purpose of the present study was to investigate the role of sirtuin expression, activity and inhibition in the survival of pediatric sarcoma cell lines.We have analyzed the expression of SIRT1 and SIRT2 in a series of pediatric sarcoma tumor cell lines and normal cells, and we have evaluated the activity of the sirtuin inhibitor and p53 activator tenovin-6 (Tv6) in synovial sarcoma and rhabdomyosarcoma cell lines. We show that SIRT1 is overexpressed in synovial sarcoma biopsies and cell lines in comparison with normal mesenchymal cells. Tv6 induced apoptosis as well as impaired autophagy flux. Using siRNA to knock down SIRT1 and SIRT2, we show that the expression of both proteins is crucial for the survival of rhabdomyosarcoma cells and that the loss of SIRT1 expression results in a decreased LC3II expression. Our results show that SIRT1 and SIRT2 expressions are crucial for the survival of synovial sarcomas and rhabdomyosarcomas, and demonstrate that the pharmacological inhibition of sirtuins impairs the autophagy process and induces tumor cell death.
  •  
18.
  • Oberstedt, Andreas, et al. (författare)
  • Improved values for the characteristics of prompt-fission gamma-ray spectra from the reaction U-235(n(th), f)
  • 2013
  • Ingår i: Physical Review C. Nuclear Physics. - : American Physical Society. - 0556-2813 .- 1089-490X .- 2469-9985 .- 2469-9993. ; 87:5, s. 051602-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present results from measurements of prompt gamma rays from the thermal neutron induced fission of U-235. Photons were measured in coincidence with fission fragments with cerium-doped LaCl3 and LaBr3 as well as CeBr3 scintillation detectors, which offer an intriguing combination of excellent timing resolution and good resolving power. The spectra measured with all employed detectors are in excellent agreement with respect to their shapes. Characteristic parameters were extracted for a gamma-energy range from 0.1 to 6.0 MeV and the results obtained with several detectors were averaged. From that, the average emission yield of prompt-fission gamma rays was determined to be (nu) over bar (gamma) = (8.19 +/- 0.11) per fission, the average energy per photon to be epsilon(gamma) = (0.85 +/- 0.02) MeV, and the total energy to be E-gamma,E-tot = (6.92 +/- 0.09) MeV. The uncertainties are much lower than the 7.5% requested for the modeling of advanced nuclear reactor cores. Estimating the influence of gamma rays with energies between 6 and 10 MeV on the values determined in this work revealed a negligible deviation of the order of the found uncertainties.
  •  
19.
  • Oberstedt, S., et al. (författare)
  • Correlation measurements of fission-fragment properties
  • 2010
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Konferensbidrag (refereegranskat)abstract
    • For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments' heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E) spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.
  •  
20.
  •  
21.
  •  
22.
  • Gurung, Iman S., et al. (författare)
  • Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia
  • 2011
  • Ingår i: Cardiovascular Research. - : Oxford University Press. - 0008-6363 .- 1755-3245. ; 92:1, s. 29-38
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β(-/-) hearts potentially associated with increased arrhythmic risk in metabolic diseases.METHODS AND RESULTS: Microarray analysis in mouse PGC1β(-/-) hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β(-/-) mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β(-/-) hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β(-/-) ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca(2+) transients, whose amplitude and frequency were increased by isoprenaline, and Ca(2+) currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K(+) currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca(2+)-calmodulin dependent protein kinase II expression.CONCLUSION: PGC1β(-/-) hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca(2+) homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
  •  
23.
  • Imrek, J., et al. (författare)
  • Internals and evaluation of the miniPET-II detector module
  • 2007
  • Ingår i: 2007 IEEE Nuclear Science Symposium Conference Record. - 1424409233 - 9781424409235 ; , s. 2930-2932
  • Konferensbidrag (refereegranskat)abstract
    • We report on the architecture of the System-on-Module (SoM) developed by our group for miniPET-II, the second version of our small animal PET scanner. The paper describes the hardware and software implementation details of the SoM we realized inside the miniPET-II detector module, the embedded Linux operation system, and the the initial results of bandwidth test measurements on the assembled SoM. Detailed description is given on the interfacing of the updated miniPET IP Core to the SoM, on the efficient data transfer method that implements device-to-device DMA transfer, and on the usage of User Datagram Protocol (UDP/IP) for high speed data transfer.
  •  
24.
  • Kis, S. A., et al. (författare)
  • Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 571:02-jan, s. 449-452
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to deter-mine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.
  •  
25.
  • Oberstedt, S., et al. (författare)
  • High-precision prompt-gamma-ray spectral data from the reaction Pu-241(n(th), f)
  • 2014
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 90:2, s. Art. no. 024618-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present results from the first high-precision prompt-gamma-ray spectral measurements from the reaction Pu-241(n(th), f). Apart from one recent experiment, no data are reported in the literature for this fissioning system, which motivated a new dedicated experiment. We have measured prompt-fission gamma rays with three cerium-doped LaBr3 (two 5.08 cm x 5.08 cm and one 7.62 cm x 7.62 cm) and one CeBr3 (5.08 cm x 5.08 cm) scintillation detectors, which all exhibit excellent timing and good energy resolution. The average gamma-ray multiplicity was determined to be (nu) over bar (gamma) = (8.21 +/- 0.09) per fission, the average energy to be epsilon(gamma) = (0.78 +/- 0.01) MeV, and the total energy to be E-gamma,E-tot = (6.41 +/- 0.06) MeV as the weighted average from all detectors. Since the results from all detectors are in excellent agreement, and the total released gamma energy is modestly higher than the one in the present evaluated nuclear data files, we suspect that the underestimation of the prompt-gamma heating in nuclear reactors is due to fast-neutron-induced fission on U-238 or rather from fission induced by gamma rays from neutron capture in the construction material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy