SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kistler L) "

Sökning: WFRF:(Kistler L)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allen, R. C., et al. (författare)
  • A statistical study of EMIC waves observed by Cluster : 1. Wave properties
  • 2014
  • Ingår i: 2014 XXXITH URSI General Assembly And Scientific Symposium (URSI GRASS). - 9781467352253
  • Konferensbidrag (refereegranskat)abstract
    • Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the L-MLT frame within a limited MLAT range. In this study, we present a statistical analysis of EMIC wave properties using ten years (2001-2010) of data from Cluster, totaling 17,987 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The current paper focuses on the wave occurrence distribution as well as the distribution of wave properties.
  •  
2.
  • Allen, R. C., et al. (författare)
  • A statistical study of EMIC waves observed by Cluster : 2. Associated plasma conditions
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:7, s. 6458-6479
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10years (2001-2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. This paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these same frames. Based on the distributions of hot H+ anisotropy, electron and hot H+ density measurements, hot H+ parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.
  •  
3.
  • Allen, R. C., et al. (författare)
  • A statistical study of EMIC waves observed by Cluster : 1. Wave properties
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:7, s. 5574-5592
  • Tidskriftsartikel (refereegranskat)abstract
    • Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10years (2001-2010) of data from Cluster, totaling 25,431min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
  •  
4.
  • Allen, R. C., et al. (författare)
  • Multiple bidirectional EMIC waves observed by Cluster at middle magnetic latitudes in the dayside magnetosphere
  • 2013
  • Ingår i: Journal of Geophysical Research: Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 118:10, s. 6266-6278
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well accepted that the propagation of electromagnetic ion cyclotron (EMIC) waves are bidirectional near their source regions and unidirectional when away from these regions. The generally believed source region for EMIC waves is around the magnetic equatorial plane. Here we describe a series of EMIC waves in the Pc1 (0.2-5 Hz) frequency band above the local He+ cyclotron frequency observed in situ by all four Cluster spacecraft on 9 April 2005 at midmagnetic latitudes (MLAT = similar to 33 degrees-49 degrees) with L = 10.7-11.5 on the dayside (MLT = 10.3-10.4). A Poynting vector spectrum shows that the wave packets consist of multiple groups of packets propagating bidirectionally, rather than unidirectionally, away from the equator, while the local plasma conditions indicate that the spacecraft are entering into a region sufficient for local wave excitation. One possible interpretation is that, while part of the observed waves are inside their source region, the others are either close enough to the source region, or mixed with the wave packets from multiple source regions at different latitudes.
  •  
5.
  • Andermann, Tobias, et al. (författare)
  • A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project
  • 2020
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
  •  
6.
  • De Spiegeleer, Alexandre, et al. (författare)
  • Oscillatory Flows in the Magnetotail Plasma Sheet : Cluster Observations of the Distribution Function
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:4, s. 2736-2754
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma dynamics in Earth's magnetotail is often studied using moments of the distribution function, which results in losing information on the kinetic properties of the plasma. To better understand oscillatory flows observed in the midtail plasma sheet, we investigate two events, one in each hemisphere, in the transition region between the central plasma sheet and the lobes using the 2-D ion distribution function from the Cluster 4 spacecraft. In this case study, the oscillatory flows are a manifestation of repeated ion flux enhancements with pitch angle changing from 0 degrees to 180 degrees in the Northern Hemisphere and from 180 degrees to 0 degrees in the Southern Hemisphere. Similar pitch angle signatures are observed seven times in about 80 min for the Southern Hemisphere event and three times in about 80 min for the Northern Hemisphere event. The ion flux enhancements observed for both events are slightly shifted in time between different energy channels, indicating a possible time-of-flight effect from which we estimate that the source of particle is located similar to 5-25R(E) and similar to 40-107R(E) tailward of the spacecraft for the Southern and Northern Hemisphere event, respectively. Using a test particle simulation, we obtain similar to 21-46 R-E for the Southern Hemisphere event and tailward of X similar to - 65R(E) (outside the validity region of the model) for the Northern Hemisphere event. We discuss possible sources that could cause the enhancements of ion flux.
  •  
7.
  • Fuselier, S. A., et al. (författare)
  • High-density O+ in Earth's outer magnetosphere and its effect on dayside magnetopause magnetic reconnection
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:12, s. 10257-10269
  • Tidskriftsartikel (refereegranskat)abstract
    • The warm plasma cloak is a source of magnetospheric plasma that contain significant O+. When the O+ density in the magnetosphere near the magnetopause is >0.2 cm(-3) and the H+ density is <1.5 cm(-3), then O+ dominates the magnetospheric ion mass density by more than a factor of 2. A survey is conducted of such O+-rich warm plasma cloak intervals and their effect on reconnection at the Earth's magnetopause. The survey uses data from the Magnetospheric Multiscale mission (MMS) and the results are compared and combined with a previous survey of the warm plasma cloak. Overall, the warm plasma cloak and the O+-rich warm plasma cloak reduce the magnetopause reconnection rate by >20% due to mass-loading only about 2% to 4% of the time. However, during geomagnetic storms, O+ dominates the mass density of the warm plasma cloak and these mass densities are very high. Therefore, a separate study is conducted to determine the effect of the warm plasma cloak on magnetopause reconnection during geomagnetically disturbed times. This study shows that the warm plasma cloak reduces the reconnection rate significantly about 25% of the time during disturbed conditions.
  •  
8.
  • Fuselier, S. A., et al. (författare)
  • Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6204-6213
  • Tidskriftsartikel (refereegranskat)abstract
    • When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.
  •  
9.
  • Arvelius, S., et al. (författare)
  • Statistical study of relationships between dayside high-altitude and high-latitude O+ ion outflows, solar winds, and geomagnetic activity
  • 2005
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 23, s. 1909-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE) and high-latitude (from 70 to ~90 deg invariant latitude, ILAT) polar region. The principal results are: (1) Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2) at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft); (3) however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region.
  •  
10.
  •  
11.
  • Bavassano Cattaneo, M. Bice, et al. (författare)
  • Kinetic signatures during a quasi-continuous lobe reconnection event : Cluster Ion Spectrometer (CIS) observations
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:A9, s. A09212-
  • Tidskriftsartikel (refereegranskat)abstract
    • On 3 December 2001 the Cluster spacecraft observed a long-lasting lobe reconnection event in the southern high-latitude dusk magnetopause (MP) tailward of the cusp, during a 4 hour interval of mainly northward interplanetary magnetic field ( IMF) and of sub-Alfvenic magnetosheath flow. Almost all the MP encounters have accelerated flows ( for which the Walen test has been successfully verified by Retino et al. ( 2005)) as well as a large number of secondary populations related to reconnection, that is, ions of magnetosheath or magnetospheric origin which cross the MP either way. The detailed analysis of the distribution functions shows that the reconnection site frequently moves relative to the spacecraft, but simultaneous measurements by two spacecraft on opposite sides of the reconnection site indicate that the spacecraft's distance from the X line is small, i.e., below 3200 km. The vicinity to the X line throughout the event is probably the reason why the distribution functions characteristics agree with theoretical expectations on both sides of the reconnection site throughout this long event. Moreover, the detailed analysis of the distribution functions shows evidence, during a few time intervals, of dual reconnection, i.e., of reconnection simultaneously going on also in the northern hemisphere.
  •  
12.
  • Cahill, James A, et al. (författare)
  • Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.
  • 2015
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof, and Chichagof Islands (ABC Islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC Islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC Islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. This article is protected by copyright. All rights reserved.
  •  
13.
  • Giang, Tony, et al. (författare)
  • Outflowing protons and heavy ions as a source for the sub-keV ringcurrent
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:2, s. 839-849
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Cluster CIS instrument have been used for studying proton and heavy ion (O+ and He+ ) char- acteristics of the sub-keV ring current. Thirteen events with dispersed heavy ions (O+ and He+ ) were identified out of two years (2001 and 2002) of Cluster data. Allevents took place during rather geomagnetically quiet periods. Three of those events have been investigated in detail: 21 August 2001, 26 November 2001 and 20 February 2002. These events were chosen from varying magnetic local times (MLT), and they showed different characteristics. In this article, we discuss the potential source for sub-keV ring current ions. We show that: (1) outflows of terrestrialsub-keV ions are supplied to the ring current also during quiet geomagnetic conditions; (2) the composition of the out-flow implies an origin that covers an altitude interval from the low-altitude ionosphere to the plasmasphere, and (3) terrestrial ions are moving upward along magnetic field lines, at times forming narrow collimated beams, but  frequently also as broad beams. Over time, the ion beams are expected to gradually become isotropised as a result of wave-particleinteraction, eventually taking the form of isotropic drifting sub-keV ion signatures. We argue that the sub-keV energy-time dispersed signatures originate from field-aligned terrestrial ion energising and outflow, which may occur at all local times and persist also during quiet times.
  •  
14.
  • Hamrin, Maria, et al. (författare)
  • Energy conversion regions as observed by Cluster in the plasma sheet
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00K08-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we present a review of recent studies of observations of localized energy conversion regions (ECRs) observed by Cluster in the plasma sheet at altitudes of 15-20R(E). By examining variations in the power density, E . J, where E is the electric field and J is the current density, we show that the plasma sheet exhibits a high level of fine structure. Approximately three times as many concentrated load regions (CLRs) (E . J > 0) as concentrated generator regions (CGRs) (E . J < 0) are identified, confirming the average load character of the plasma sheet. Some ECRs are found to relate to auroral activity. While ECRs are relevant for the energy conversion between the electromagnetic field and the particles, bursty bulk flows (BBFs) play a central role for the energy transfer in the plasma sheet. We show that ECRs and BBFs are likely to be related, although details of this relationship are yet to be explored. The plasma sheet energy conversion increases rather simultaneously with increasing geomagnetic activity in both CLRs and CGRs. Consistent with large-scale magnetotail simulations, most of the observed ECRs appear to be rather stationary in space but varying in time. We estimate that the ECR lifetime and scale size are a few minutes and a few R(E), respectively. It is conceivable that ECRs rise and vanish locally in significant regions of the plasma sheet, possibly oscillating between load and generator character, while some energy is transmitted as Poynting flux to the ionosphere.
  •  
15.
  • Hamrin, Maria, et al. (författare)
  • Evidence for the braking of flow bursts as they propagate toward the Earth
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:11, s. 9004-9018
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we use energy conversion arguments to investigate the possible braking of flow bursts as they propagate toward the Earth. By using EJ data (E and J are the electric field and the current density) observed by Cluster in the magnetotail plasma sheet, we find indications of a plasma deceleration in the region -20 R-E < X < - 15 R-E. Our results suggest a braking mechanism where compressed magnetic flux tubes in so-called dipolarization fronts (DFs) can decelerate incoming flow bursts. Our results also show that energy conversion arguments can be used for studying flow braking and that the position of the flow velocity peak with respect to the DF can be used as a single-spacecraft proxy when determining energy conversion properties. Such a single-spacecraft proxy is invaluable whenever multispacecraft data are not available. In a superposed epoch study, we find that a flow burst with the velocity peak behind the DF is likely to decelerate and transfer energy from the particles to the fields. For flow bursts with the peak flow at or ahead of the DF we see no indications of braking, but instead we find an energy transfer from the fields to the particles. From our results we obtain an estimate of the magnitude of the deceleration of the flow bursts, and we find that it is consistent with previous investigations.
  •  
16.
  • Hamrin, Maria, et al. (författare)
  • Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions
  • 2006
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 24, s. 637-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Here and in the companion paper, Marghitu et al. (2006), we investigate plausible auroral generator regions in the nightside auroral magnetosphere. In this article we use magnetically conjugate data from the Cluster and the FAST satellites during a 3.5-h long event from 19-20 September 2001. Cluster is in the Southern Hemisphere close to apogee, where it probes the plasma sheet and lobe at an altitude of about 18 RE. FAST is below the acceleration region at approximately 0.6 RE. Searching for clear signatures of negative power densities, E(.)J < O, in the Cluster data we can identify three concentrated generator regions (CGRs) during our event. From the magnetically conjugate FAST data we see that the observed generator regions in the Cluster data correlate with auroral precipitation. The downward Poynting flux observed by Cluster, as well as the scale size of the CGRs, are consistent with the electron energy flux and the size of the inverted-V regions observed by FAST. To our knowledge, these are the first in-situ observations of the crossing of an auroral generator region. The main contribution to E(.)J < O comes from the GSE E(y)J(y). The electric field E-y is weakly negative during most of our entire event and we conclude that the CGRs occur when the duskward current J(y) grows large and positive. We find that our observations are consistent with a local southward expansion of the plasma sheet and/or rather complicated, 3-D wavy structures propagating over the Cluster satellites. We find that the plasma is working against the magnetic field, and that kinetic energy is being converted into electromagnetic energy. Some of the energy is transported away as Poynting flux.
  •  
17.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4131-4146
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, and in a companion paper by Hamrin et al. (2009) [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15-20RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E.J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs) as Concentrated Generator Regions (CGRs). We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL). For both CLRs and CGRs, E and J in the GSM y (cross-tail) direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.
  •  
18.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4147-4155
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 R-E in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E.J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 R-E less than or similar to Delta 1 S-ECR less than or similar to 5 R-E. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.
  •  
19.
  • Hamrin, Maria, et al. (författare)
  • The evolution of flux pileup regions in the plasma sheet : Cluster observations
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-9380 .- 2169-9402. ; 118:10, s. 6279-6290
  • Tidskriftsartikel (refereegranskat)abstract
    • Bursty bulk flows (BBFs) play an important role for the mass, energy, and magnetic flux transport in the plasma sheet, and the flow pattern in and around a BBF has important consequences for the localized energy conversion between the electromagnetic and plasma mechanical energy forms. The plasma flow signature in and around BBFs is often rather complicated. Return flows and plasma vortices are expected to exist at the flanks of the main flow channel, especially near the inner plasma sheet boundary, but also farther down-tail. A dipolarization front (DF) is often observed at the leading edge of a BBF, and a flux pileup region (FPR) behind the DF. Here we present Cluster data of three FPRs associated with vortex flows observed in the midtail plasma sheet on 15 August 2001. According to the principles of Fu et al. (2011, 2012c), two of the FPRs are considered to be in an early stage of evolution (growing FPRs). The third FPR is in a later stage of evolution (decaying FPR). For the first time, the detailed energy conversion properties during various stages of the FPR evolution have been measured. We show that the later stage FPR has a more complex vortex pattern than the two earlier stage FPRs. The two early stage FPR correspond to generators, EJ<0, while the later stage FPR only shows weak generator characteristics and is instead dominated by load signatures at the DF, EJ>0. Moreover, to our knowledge, this is one of the first times BBF-related plasma vortices have been observed to propagate over the spacecraft in the midtail plasma sheet at geocentric distances of about 18R(E). Our observations are compared to recent simulation results and previous observations.
  •  
20.
  •  
21.
  •  
22.
  • Li, Yu-Xuan, et al. (författare)
  • Quantification of Cold-Ion Beams in a Magnetic Reconnection Jet
  • 2021
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold (few eV) ions of ionospheric origin are widely observed in the lobe region of Earth's magnetotail and can enter the ion jet region after magnetic reconnection is triggered in the magnetotail. Here, we investigate a magnetotail crossing with cold ions in one tailward and two earthward ion jets observed by the Magnetospheric Multiscale (MMS) constellation of spacecraft. Cold ions co-existing with hot plasma-sheet ions form types of ion velocity distribution functions (VDFs) in the three jets. In one earthward jet, MMS observe cold-ion beams with large velocities parallel to the magnetic fields, and we perform quantitative analysis on the ion VDFs in this jet. The cold ions, together with the hot ions, are reconnection outflow ions and are a minor population in terms of number density inside this jet. The average bulk speed of the cold-ion beams is approximately 38% larger than that of the hot plasma-sheet ions. The cold-ion beams inside the explored jet are about one order of magnitude colder than the hot plasma-sheet ions. These cold-ion beams could be accelerated by the Hall electric field in the cold ion diffusion region and the shrinking magnetic field lines through the Fermi effect.
  •  
23.
  •  
24.
  • Lui, A. T. Y., et al. (författare)
  • Cluster observation of plasma flow reversal in the magnetotail during a substorm
  • 2006
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 24:7, s. 2005-2013
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of similar to 19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the B-z component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1) there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2) the x-component of the Lorentz force did not change sign while the other two did, (3) the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4) the electric field was occasionally dawnward, producing a dynamo effect, and (5) the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.
  •  
25.
  • Lui, A. T. Y., et al. (författare)
  • Internal structure of a magnetic flux rope from Cluster observations
  • 2007
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 34:7, s. L07102-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate a magnetic flux rope (MFR) observed by Cluster in the magnetotail during a substorm on 2001 August 22. The MFR was aligned with its principal axis closely along the dawn-dusk direction and had a small size of similar to 2 R-E with a total current of similar to 0.8 MA. The four spacecraft traversed the MFR at different distances from its center based on the magnetic field signature. This fortuitous situation reveals the irregular magnetic field structure in its inner core, which is a feature reported here for the first time. At the leading edge, the y-component of the electric field was dawnward against the current density direction ( dynamo action) and the x-component of the Lorentz force was Earthward. These parameters reversed in direction at its trailing edge (load).
  •  
26.
  • Lui, A. T. Y., et al. (författare)
  • Prelude to THEMIS tail conjunction study
  • 2007
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 25:4, s. 1001-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • A close conjunction of several satellites (LANL, GOES. Polar. Geotail, and Cluster) distributed from the geostationary altitude to about 16 R-E downstream in the tail occurred during substorm activity as indicated by global auroral imaging and ground-based magnetometer data. This constellation of satellites resembles what is planned for the THEMIS (Time History of Events and Macroscopic Interactions during Substorms) mission to resolve the substorm controversy on the location of the substorm expansion onset region. In this article, we show in detail the dipolarization and dynamic changes seen by these satellites associated with two onsets of substorm intensification activity. In particular, we find that dipolarization at similar to 16 R-E downstream in the tail can occur with dawnward electric field and without plasma flow, just like some near-Earth dipolarization events reported previously. The spreading of substorm disturbances in the tail coupled with complementary ground observations indicates that the observed time sequence on the onsets of substorm disturbances favors initiation in the near-Earth region for this THEMIS-like conjunction.
  •  
27.
  • Marklund, Göran T., et al. (författare)
  • Characteristics of quasi-static potential structures observed in the auroral return current region by Cluster
  • 2004
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 11:5-6, s. 709-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal and spatial characteristics of intense quasi-static electric fields and associated electric potential structures in the return current region are discussed using Cluster observations at geocentric distances of about 5 Earth radii. Results are presented from four Cluster encounters with such acceleration structures to illustrate common as well as different features of such structures. The electric field structures are characterized by (all values are projected to 100 cm altitude) peak amplitudes of approximate to 1V/m, bipolar or unipolar profiles, perpendicular scale sizes of approximate to 10km, occurrence at auroral plasma boundaries associated with plasma density gradients, downward field-aligned currents of approximate to 10 muA/m(2), and upward electron beams with characteristic energies of a few hundred eV to a few keV. Two events illustrate he temporal evolution of bipolar, diverging electric field strictures, indicative of positive U-shaped potentials increasing in magnitude from less than 1 kV to a few kV on a few 100s time scale. This is also the typical formation time for ionospheric plasma cavities, which are connected to the potential structure and suggested to evolve hand-in-hand with these. In one of these events an energy decay of inverted-V ions was observed in the upward field-aligned current region prior to the acceleration potential increase in the adjacent downward current region, possibly suggesting that a potential redistribution took place between the two current branches. The other two events were characterized by intense unipolar electric fields, indicative of S-shaped potential contours and were encountered at the polar cap boundary. The total observation time for these events was typically 10-20 s, too short for monitoring the evolution of the structure, bui yet of interest for revealing their short term stability. The locations of the two bipolar events at the poleward boundary of the central plasma sheet and of the two unipolar events at the polar cap boundary, suggest that the special profile shape depends on whether plasma populations, dense enough to support upward field-aligned currents and closure of the return current, exist on both sides, or on one side only, of the boundary.
  •  
28.
  • Marklund, Göran T., et al. (författare)
  • Dynamics and characteristics of electric-field structures in the auroral return current region observed by Cluster
  • 2006
  • Ingår i: Physica Scripta. - 0031-8949 .- 1402-4896. ; T122, s. 34-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The temporal evolution and other characteristics of intense quasi- static electric fields in the return current region are discussed using Cluster observations. A narrow- scale, divergent electric field, the high- altitude signature of a positive U- shaped potential structure, was observed at the poleward edge of the central plasma sheet, close to magnetic midnight at a geocentric distance of about 4.2 Earth radii. Its acceleration potential increased from less than 1 to 3 kV on a 100 s timescale, similar to the formation time for ionospheric plasma density holes, and consistent with previous results for this kind of structure. In the adjacent upward current region, an energy decrease in inverted- V ions was observed some minutes prior to this. The inverted- V potential decrease was roughly equal to the subsequent perpendicular potential increase in the return current region, suggesting that a potential redistribution took place between the two adjacent current branches. Other characteristics of this and three other return current structures are summarized, to illustrate both common and different features of these. The structures are characterized by ( all values have been mapped to the ionospheric level) peak electric- field magnitudes of approximate to 1Vm(-1), bipolar or unipolar profiles, occurrence at plasma boundaries associated with plasma density gradients, perpendicular scale sizes of approximate to 10 km, downward field-aligned currents of approximate to 10 mu A m(-2), and upward electron beams with characteristic energies of a few hundred to a few thousand eV. The bipolar and unipolar electric- field profiles are proposed to reflect whether plasma populations, dense enough to support upward field-aligned currents (by which the return current can close) exist on both sides, or on one side only of the boundary.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Puhl-Quinn, P. A., et al. (författare)
  • Cluster and DMSP observations of SAID electric fields
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:A5, s. A05219-
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We report on magnetically conjugate Cluster and the Defense Meteorological Satellite Program (DMSP) satellite observations of subauroral ion drifts (SAID) during moderate geomagnetic activity levels on 8 April 2004. To our knowledge, the field-aligned separation of DMSP and Cluster (approximate to 28,000 km) is the largest separation ever analyzed with respect to the SAID phenomenon. Nonetheless, we show coherent, subauroral magnetosphere-ionosphere (MI) coupling along an entire field line in the post-dusk sector. The four Cluster satellites crossed SAID electric field channels with meridional magnitude E-M of 25 mV/m in situ and latitudinal extent Delta Lambda approximate to 0.5 degrees in the southern and northern hemispheres near 07:00 and 07:30 UT, respectively. Cluster was near perigee (R approximate to 4 R-E) and within 5 degrees (15 degrees) of the magnetic equator for the southern ( northern) crossing. The SAID were located near the plasmapause-within the ring current-plasmasphere overlap region. Downward field-aligned current signatures were observed across both SAID crossings. The most magnetically and temporally conjugate SAID field from DMSP F16A at 07:12 UT was practically identical in latitudinal size to that mapped from Cluster. Since the DMSP ion drift meter saturated at 3000 m/s (or similar to 114 mV/m) and the electrostatically mapped value for E-M from Cluster exceeded 300 mV/m, a magnitude comparison of E-M was not possible. Although the conjugate measurements show similar large-scale SAID features, the differences in substructure highlight the physical and chemical diversity of the conjugate regions.
  •  
33.
  •  
34.
  •  
35.
  • Toledo-Redondo, S., et al. (författare)
  • Impacts of Ionospheric Ions on Magnetic Reconnection and Earth's Magnetosphere Dynamics
  • 2021
  • Ingår i: Reviews of geophysics. - : John Wiley & Sons. - 8755-1209 .- 1944-9208. ; 59:3
  • Forskningsöversikt (refereegranskat)abstract
    • Ionospheric ions (mainly H+, He+, and O+) escape from the ionosphere and populate the Earth's magnetosphere. Their thermal energies are usually low when they first escape the ionosphere, typically a few electron volt to tens of electron volt, but they are energized in their journey through the magnetosphere. The ionospheric population is variable, and it makes significant contributions to the magnetospheric mass density in key regions where magnetic reconnection is at work. Solar wind—magnetosphere coupling occurs primarily via magnetic reconnection, a key plasma process that enables transfer of mass and energy into the near-Earth space environment. Reconnection leads to the triggering of magnetospheric storms, auroras, energetic particle precipitation and a host of other magnetospheric phenomena. Several works in the last decades have attempted to statistically quantify the amount of ionospheric plasma supplied to the magnetosphere, including the two key regions where magnetic reconnection occurs: the dayside magnetopause and the magnetotail. Recent in situ observations by the Magnetospheric Multiscale spacecraft and associated modeling have advanced our current understanding of how ionospheric ions alter the magnetic reconnection process, including its onset and efficiency. This article compiles the current understanding of the ionospheric plasma supply to the magnetosphere. It reviews both the quantification of these sources and their effects on the process of magnetic reconnection. It also provides a global description of how the ionospheric ion contribution modifies the way the solar wind couples to the Earth's magnetosphere and how these ions modify the global dynamics of the near-Earth space environment.Plain Language SummaryAbove the neutral atmosphere, space is filled with charged particles, which are tied to the Earth's magnetic field. The particles come from two sources, the solar wind and the Earth's upper atmosphere. Most of the solar wind particles are deflected by the Earth´s magnetic field, but some can penetrate into near-Earth space. The ionized layer of the upper atmosphere is continuously ejecting particles into space, which have low energies and are difficult to measure. We investigate the relative importance of the two charged particle sources for the dynamics of plasma processes in near-Earth space. In particular, we consider the effects of these sources in magnetic reconnection. Magnetic reconnection allows initially separated plasma regions to become magnetically connected and mix, and converts magnetic energy to kinetic energy of charged particles. Magnetic reconnection is the main driver of geomagnetic activity in the near-Earth space, and is responsible for the release of energy that drives a variety of space weather effects. We highlight the fact that plasma from the ionized upper atmosphere contributes a significant part of the density in the key regions where magnetic reconnection is at work, and that this contribution is larger when the geomagnetic activity is high.
  •  
36.
  • Vaivads, A., et al. (författare)
  • What high altitude observations tell us about the auroral acceleration : A cluster/DMSP conjunction
  • 2003
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Magnetic conjugate observations by Cluster and DMSP F14 satellites are used to study the field lines of auroral arc. Cluster is well above the acceleration region and observes upward keV ion beams and bipolar electric structures. The integrated potential at Cluster altitudes shows a dip that is consistent with the keV electron acceleration energy at low altitude. The earthward Poynting flux at Cluster altitudes is comparable to the electron energy flux at low altitudes. Thus, for this event the auroral acceleration can be described as a quasi-stationary potential structure with equipotential lines reaching the Cluster altitudes. The arc forms at the outer edge of the plasma sheet at a density gradient. Multiple Cluster satellite measurements allow us to study the density increase associated with the development of the arc, and to estimate the velocity of the structure. The quasi-potential structure itself may be part of an Alfven wave.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy