SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knall J.) "

Sökning: WFRF:(Knall J.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frey, B. N., et al. (författare)
  • Cooling Yb-Doped Silica Fibers and Fiber Lasers with Anti-Stokes Pumping
  • 2023
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510659797
  • Konferensbidrag (refereegranskat)abstract
    • Optical cooling in Yb-doped silica fibers using anti-Stokes fluorescence has become a subject of great interest in the fiber laser community. This paper provides an update on the development of silica fibers designed specifically to enhance their cooling properties. This growing list includes a new, nearly single-mode fiber with a borophosphosilicate core that produced –65 mK of cooling with only 260 mW of 1040-nm pump power. The silica compositions that have now been successfully cooled at atmospheric pressure by anti-Stokes fluorescence by our team include aluminosilicate, aluminofluorosilicate, borophosphosilicate, and aluminosilicate doped with one of three different alkali-earth nanoparticles (Ba, Sr, and Ca). By fitting the measured temperature dependence of the cooled fiber on pump power, two key parameters that control the degree of cooling are inferred, namely the critical quenching concentration and the absorptive loss due to impurities. The inferred values compiled for the fibers that cooled indicate that the extracted heat is highest when the Yb concentration is 2 wt.% or more (to maximize heat extraction), the Al concentration is ~0.8 wt.% or greater (to reduce quenching), and the absorptive loss is below approximately 15 dB/km, and ideally below 5 dB/km (to minimize heating due to pump absorption). Only two of the reported fibers, an LaF3-doped and an LuF3-doped nanoparticle fiber, did not cool, because their Yb and Al concentrations were not sufficiently high. This analysis shows that through careful composition control (especially the Al and Yb concentrations) and minimization of the OH contamination, a new generation of Yb-doped silica fibers is emerging with higher Yb concentrations, greater resistance to quenching, and lower residual loss than commercial Yb-doped fibers. They can be expected to have a significant impact not only on optically cooled devices but also on a much broader range of fiber lasers and amplifiers. 
  •  
2.
  • Knall, J., et al. (författare)
  • Radiation-balanced silica fiber laser
  • 2021
  • Ingår i: Optica. - 2334-2536. ; 8:6, s. 830-833
  • Tidskriftsartikel (refereegranskat)abstract
    • In optically pumped lasers, heat generated by the quantum defect causes detrimental fluctuations in the output mode, frequency, and power. Common heat-mitigation techniques use bulky mechanical coolers that introduce vibrations, leading to laser frequency and amplitude noise. Here, we present a radiation-balanced fiber laser, optically cooled by anti-Stokes fluorescence (ASF). The gain medium is a silica fiber with a 21-µm-diameter core doped with 2.06 wt. % Yb3+ and co-doped with Al2O3 and F- to reduce concentration quenching. The laser was core-pumped at 1040 nm to create both gain at 1065 nm and ASF cooling at atmospheric pressure. We demonstrate a maximum output power of 114 mW with a slope efficiency of 41% while maintaining near-zero average temperature change. This result could enable the development of fiber lasers with unprecedented coherence and stability. 
  •  
3.
  • Knall, J. M., et al. (författare)
  • Experimental observation of cooling in Yb-doped silica fibers
  • 2020
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510633599
  • Konferensbidrag (refereegranskat)abstract
    • Anti-Stokes fluorescence cooling in a silica-based fiber is reported for the first time. The fiber had a core with a 20-μm diameter doped with 2.06 wt.% Yb and co-doped with 0.86 wt.% Al and 0.88 wt.% F. Core-pumping the fiber with 1040- nm light, temperature changes as large at -50 mK were measured at atmospheric pressure. Temperature measurements were performed at 12 pump wavelengths, and the measured dependence of the temperature change as a function of pump wavelength was in excellent agreement with a previously reported model. With this model, the absorptive loss in the fiber was inferred to be less than 15 dB/km, and the critical quenching concentration to be ∼15.6 wt.% Yb. This combination of low loss and high quenching concentration (a factor of 16 times higher than the highest reported values for Yb-doped silica) is what allowed the observation of cooling. The temperature measurements were performed at atmospheric pressure using a custom slow-light fiber Bragg grating sensor with an improved thermal contact between the test fiber and the FBG. The improved method involves isopropanol to establish a good thermal contact between the two fibers. This eliminated a source of heating and enabled more accurate measurements of the cooled-fiber temperature. This improved temperaturemeasurement set-up also led to a new cooling record in a multimode Yb-doped ZBLAN fiber at atmospheric pressure. When pumped at 1030 nm, the fiber cooled by -3.5 K, a factor of 5.4 times higher than the previous record. 
  •  
4.
  • Balliu, Enkeleda, et al. (författare)
  • Predictive comparison of anti-Stokes fluorescence cooling in oxide and non-oxide fiber hosts doped with Er3+, Pr3+, or Yb3
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering.
  • Konferensbidrag (refereegranskat)abstract
    • A comprehensive study was performed to quantify anti-Stokes-fluorescence (ASF) cooling in fibers of various host compositions (telluride, fluorozirconates, fluorophosphates, phosphates, and chalcogenides) doped with Yb3+ or Er3+. Published expressions were used to calculate the maximum heat that can be extracted per unit length and time from a single-mode fiber in the limit of negligible absorptive loss, and the associated cooling efficiency. These expressions consider host- and ion-dependent parameters, namely the absorption and emission cross-section spectra, the radiative and nonradiative lifetimes, and the critical concentration for quenching. Using these expressions with published values for these parameters, the maximum extractable heat was calculated for a large-mode-area fiber (NA = 0.05) doped with either Yb3+ or Er3+ in a variety of hosts. The results show that for a given ion, the maximum heat that can be extracted depends strongly on the host due to the strong dependence of quenching on host composition. In contrast, the cooling efficiency (ratio of extracted heat to pump power absorbed) depends very weakly on the host. The cooling efficiency is also almost twice as high for Er3+ (average of 3.8%) than for Yb3+ (average of 2.2%) due to the larger gap between the pump and mean fluorescence energy in Er3+. Of the limited number of materials for which a full set of data was found in the literature, the highest extractable heat for Yb3+ is in phosphate (-51.5 mW/m), and for Er3+ is in chalcogenide (-10.3 mW/m). This work provides a simple methodology to evaluate the quantitative cooling performance of these and other rare-earth ions in any amorphous host, a procedure that should guide researchers in the selection of optimum materials for ASF cooling of fibers.
  •  
5.
  • Knall, Jennifer, et al. (författare)
  • Experimental comparison of silica fibers for laser cooling
  • 2020
  • Ingår i: Optics Letters. - 0146-9592 .- 1539-4794. ; 45:14, s. 4020-4023
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser cooling in silica has recently been demonstrated, but there is still a lack of understanding on how fiber composition, core size, and OH- contamination influence cooling performance. In this work, six Yb-doped silica fibers were studied to illuminate the influence of these parameters. The best fiber cooled by -70 mK with only 170 mW/m of absorbed pump power at 1040 nm, which corresponds to twice as much heat extracted per unit length compared to the first reported laser cooling in silica. This new fiber has an extremely low OW loss and a higher Al concentration (2.0 wt.% Al), permitting a high Yb concentration (2.52 wt.% Yb) without incurring significant quenching. Strong correlations were found between the absorptive loss responsible for heating and the loss measured at 1380 nm due to absorption by OH-. 
  •  
6.
  • Knall, Jennifer, et al. (författare)
  • Laser cooling in a silica optical fiber at atmospheric pressure
  • 2020
  • Ingår i: Optics Letters. - 0146-9592 .- 1539-4794. ; 45:5, s. 1092-1095
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time, to the best of our knowledge, laser cooling is reported in a silica optical fiber. The fiber has a 21-μm diameter core doped with 2.06 wt.% YbM3+ and co-doped with Al2O3 and F- to increase the critical quenching concentration by a factor of 16 over the largest reported values for the Yb-doped silica. Using a custom slow-light fiber Bragg grating sensor, temperature changes up to -50 mK were measured with 0.33 W/m of absorbed pump power per unit length at 1040 nm. The measured dependencies of the temperature change on the pump power and the pump wavelength are in excellent agreement with predictions from an existing model, and they reflect the fiber's groundbreaking quality for the radiation-balanced fiber lasers. 
  •  
7.
  • Knall, Jennifer M., et al. (författare)
  • Radiation-Balanced Silica Fiber Amplifier
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 127:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report what we believe to be the first radiation-balanced fiber amplifier-a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21-mu m-diameter core highly doped with Yb3+ (2.52 wt. %) and codoped with 2.00 wt. % Al to reduce concentration quenching. The amplifier is core pumped with 1040-nm light to create anti-Stokes fluorescence cooling and gain in the core at 1064 nm. Using a custom slow-light fiber Bragg grating sensor with mK resolution, temperature measurements are performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain, while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultrastable lasers necessary to many applications, especially low-noise sensing and high-precision metrology.
  •  
8.
  • MacLachlan, Andrew J, et al. (författare)
  • Polymer/Nanocrystal Hybrid Solar Cells : Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance.
  • 2015
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 25:3, s. 409-420
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy