SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koenigk Torben) "

Sökning: WFRF:(Koenigk Torben)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Döscher, Ralf, et al. (författare)
  • The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:7, s. 2973-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
  •  
2.
  • Sterl, Andreas, et al. (författare)
  • A look at the ocean in the EC-Earth climate model
  • 2012
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 39:11, s. 2631-2657
  • Tidskriftsartikel (refereegranskat)abstract
    • EC-Earth is a newly developed global climate system model. Its core components are the Integrated Forecast System (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF) as the atmosphere component and the Nucleus for European Modelling of the Ocean (NEMO) developed by Institute Pierre Simon Laplace (IPSL) as the ocean component. Both components are used with a horizontal resolution of roughly one degree. In this paper we describe the performance of NEMO in the coupled system by comparing model output with ocean observations. We concentrate on the surface ocean and mass transports. It appears that in general the model has a cold and fresh bias, but a much too warm Southern Ocean. While sea ice concentration and extent have realistic values, the ice tends to be too thick along the Siberian coast. Transports through important straits have realistic values, but generally are at the lower end of the range of observational estimates. Exceptions are very narrow straits (Gibraltar, Bering) which are too wide due to the limited resolution. Consequently the modelled transports through them are too high. The strength of the Atlantic meridional overturning circulation is also at the lower end of observational estimates. The interannual variability of key variables and correlations between them are realistic in size and pattern. This is especially true for the variability of surface temperature in the tropical Pacific (El Nio). Overall the ocean component of EC-Earth performs well and helps making EC-Earth a reliable climate model.
  •  
3.
  • Akperov, Mirseid, et al. (författare)
  • Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)
  • 2018
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 123:5, s. 2537-2554
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.
  •  
4.
  • Akperov, Mirseid, et al. (författare)
  • Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX)
  • 2019
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
  •  
5.
  • Akperov, Mirseid, et al. (författare)
  • Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX)
  • 2023
  • Ingår i: Anthropocene. - 2213-3054. ; 44
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has warmed more than twice the rate of the entire globe. To quantify possible climate change effects, we calculate wind energy potentials from a multi-model ensemble of Arctic-CORDEX. For this, we analyze future changes of wind power density (WPD) using an eleven-member multi-model ensemble. Impacts are estimated for two periods (2020-2049 and 2070-2099) of the 21st century under a high emission scenario (RCP8.5). The multi-model mean reveals an increase of seasonal WPD over the Arctic in the future decades. WPD variability across a range of temporal scales is projected to increase over the Arctic. The signal amplifies by the end of 21st century. Future changes in the frequency of wind speeds at 100 m not useable for wind energy production (wind speeds below 4 m/s or above 25 m/s) has been analyzed. The RCM ensemble simulates a more frequent occurrence of 100 m non-usable wind speeds for the wind-turbines over Scandinavia and selected land areas in Alaska, northern Russia and Canada. In contrast, non-usable wind speeds decrease over large parts of Eastern Siberia and in northern Alaska. Thus, our results indicate increased potential of the Arctic for the development and production of wind energy. Bias corrected and not corrected near-surface wind speed and WPD changes have been compared with each other. It has been found that both show the same sign of future change, but differ in magnitude of these changes. The role of sea-ice retreat and vegetation expansion in the Arctic in future on near-surface wind speed variability has been also assessed. Surface roughness through sea-ice and vegetation changes may significantly impact on WPD variability in the Arctic.
  •  
6.
  • Akperov, M. G., et al. (författare)
  • Wind Energy Potential in the Arctic and Subarctic Regions and Its Projected Change in the 21st Century Based on Regional Climate Model Simulations
  • 2022
  • Ingår i: Russian Meteorology and Hydrology. - 1068-3739 .- 1934-8096. ; 47:6, s. 428-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative estimates of changes in wind energy resources in the Arctic were obtained using the RCA4 regional climate model under the RCP4.5 and RCP8.5 climate change scenarios for 2006–2099. The wind power density proportional to cubic wind speed was analyzed. The procedure for the model near-surface wind speed bias correction using ERA5 data as a reference with subsequent extrapolation of wind speed to the turbine height was applied to estimate the wind power density (WPD). According to the RCA4 simulations for the 21st century under both anthropogenic forcing scenarios, a noticeable increase in the WPD was noted, in particular, over the Barents, Kara, and Chukchi seas in winter. In summer, a general increase in the WPD is manifested over the Arctic Ocean. The changes are more significant under the RCP8.5 scenario with high anthropogenic forcing for the 21st century. According to model projections, an increase in the interdaily WPD variations does not generally lead to the deviations of wind speed to the values at which the operation of wind generators is unfeasible.
  •  
7.
  • Brodeau, Laurent, et al. (författare)
  • Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries
  • 2016
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 46:9, s. 2863-2882
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the variability and the evolution of oceanic deep convection in the northern North Atlantic and the Nordic Seas from 1850 to 2100 using an ensemble of 12 climate model simulations with EC-Earth. During the historical period, the model shows a realistic localization of the main sites of deep convection, with the Labrador Sea accounting for most of the deep convective mixing in the northern hemisphere. Labrador convection is partly driven by the NAO (correlation of 0.6) and controls part of the variability of the AMOC at the decadal time scale (correlation of 0.6 when convection leads by 3-4 years). Deep convective activity in the Labrador Sea starts to decline and to become shallower in the beginning of the twentieth century.  The decline is primarily caused by a decrease of the sensible heat loss to the atmosphere in winter resulting from increasingly warm atmospheric conditions. It occurs stepwise and is mainly the consequence of two severe drops in deep convective activity during the 1920s and the 1990s.  These two events can both be linked to the low-frequency variability of the NAO. A warming of the sub-surface, resulting from reduced convective mixing, combines with an increasing influx of freshwater from the Nordic Seas to rapidly strengthen the surface stratification and prevent any possible resurgence of deep convection in the Labrador Sea after the 2020s. Deep convection in the Greenland Sea starts to decline in the 2020s, until complete extinction in 2100. As a response to the extinction of deep convection in the Labrador and Greenland Seas, the AMOC undergoes a linear decline at a rate of about -0.3 Sv per decade during the twenty-first century.
  •  
8.
  • Cheung, Ho-Nam, et al. (författare)
  • Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 59:1-2, s. 433-454
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the uncertainty (i.e., inter-model spread) in future projections of the boreal winter climate, based on the forced response of ten models from the CMIP5 following the RCP8.5 scenario. The uncertainty in the forced response of sea level pressure (SLP) is large in the North Pacific, the North Atlantic, and the Arctic. A major part of these uncertainties (31%) is marked by a pattern with a center in the northeastern Pacific and a dipole over the northeastern Atlantic that we label as the Pacific–Atlantic SLP uncertainty pattern (PA∆SLP). The PA∆SLP is associated with distinct global sea surface temperature (SST) and Arctic sea ice cover (SIC) perturbation patterns. To better understand the nature of the PA∆SLP, these SST and SIC perturbation patterns are prescribed in experiments with two atmospheric models (AGCMs): CAM4 and IFS. The AGCM responses suggest that the SST uncertainty contributes to the North Pacific SLP uncertainty in CMIP5 models, through tropical–midlatitude interactions and a forced Rossby wavetrain. The North Atlantic SLP uncertainty in CMIP5 models is better explained by the combined effect of SST and SIC uncertainties, partly related to a Rossby wavetrain from the Pacific and air-sea interaction over the North Atlantic. Major discrepancies between the CMIP5 and AGCM forced responses over northern high-latitudes and continental regions are indicative of uncertainties arising from the AGCMs. We analyze the possible dynamic mechanisms of these responses, and discuss the limitations of this work.
  •  
9.
  • Docquier, David, et al. (författare)
  • A review of interactions between ocean heat transport and Arctic sea ice
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:12
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic sea ice has been retreating at fast pace over the last decades, with potential impacts on the weather and climate at mid and high latitudes, as well as the biosphere and society. The current sea-ice loss is driven by both atmospheric and oceanic processes. One of these key processes, the influence of ocean heat transport on Arctic sea ice, is one of the least understood due to the greater inaccessibility of the ocean compared to the atmosphere. Recent observational and modeling studies show that the poleward Atlantic and Pacific Ocean heat transports can have a strong influence on Arctic sea ice. In turn, the changing sea ice may also affect ocean heat transport, but this effect has been less investigated so far. In this review, we provide a synthesis of the main studies that have analyzed the interactions between ocean heat transport and Arctic sea ice, focusing on the most recent analyses. We make use of observations and model results, as they are both complementary, in order to better understand these interactions. We show that our understanding in sea ice - ocean heat transport relationships has improved during recent years. The Barents Sea is the Arctic region where the influence of ocean heat transport on sea ice has been the largest in the past years, explaining the large number of studies focusing on this specific region. The Pacific Ocean heat transport also constitutes a key driver in the recent Arctic sea-ice changes, thus its contribution needs to be taken into account. Although under-studied, the impact of sea-ice changes on ocean heat transport, via changes in ocean temperature and circulation, is also important to consider. Further analyses are needed to improve our understanding of these relationships using observations and climate models.
  •  
10.
  • Docquier, David, et al. (författare)
  • Observation-based selection of climate models projects Arctic ice-free summers around 2035
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.
  •  
11.
  • Fuentes-Franco, Ramón, et al. (författare)
  • Exploring the influence of the North Pacific Rossby wave sources on the variability of summer atmospheric circulation and precipitation over the Northern Hemisphere
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 59:7-8, s. 2025-2039
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of Rossby waves emitted in the northeastern Pacific Ocean on the Northern Hemisphere’s atmosphere during summer is analysed using ERA5 reanalysis and a new large ensemble performed with the EC-Earth3 model. The Rossby Wave Sources (RWS) trigger wave-like patterns arising from the upper troposphere of the north-eastern Pacific region, causing a response around the Northern Hemisphere with alternating regions of positive and negative correlation values between RWS and geopotential height at 500 hPa. Increased RWS intensity during summer is related to negative temperature anomalies over western North America, and positive temperature anomalies over eastern North America, concurrently with increased precipitation over the western subtropical Atlantic and Northern Europe during summer. Colder than normal conditions on the North Pacific Ocean intensify the RWS and its impact on the global atmospheric circulation. Different warm or cold states in the Pacific and Atlantic Oceans modify the atmospheric response to RWS, showing a change in the middle troposphere (500 hPa) towards a more-wavy structure with cold Pacific conditions, and towards a less-wavy structure with a warm Pacific Ocean. Furthermore, the North Atlantic plays a very important role in hindering (in the case of warm water) or permitting (cold water) that Rossby waves generated in the Pacific modulate the atmospheric conditions over Europe.
  •  
12.
  • Fuentes-Franco, Ramón, et al. (författare)
  • Winter heavy precipitation events over Northern Europe modulated by a weaker NAO variability by the end of the 21st century
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use an ensemble of models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) to analyse the number of days with extreme winter precipitation over Northern Europe and its relationship to the North Atlantic Oscillation (NAO), for the historical period 1950-2014 and two future 21st-century scenarios. Here we find that over Northern Europe, the models project twice more extreme precipitation days by the end of the 21st century under the high-emission scenario compared to the historical period. We also find a weakening of the NAO variability in the second half of the 21st century in the high greenhouse gas emission scenario compared to the historical period, as well as an increasing correlation between extreme winter precipitation events and the NAO index in both future scenarios. Models with a projected decrease in the NAO variability across the 21st century show a positive trend in the number of days with extreme winter precipitation over Northern Europe. These results highlight the role played by NAO in modulating extreme winter precipitation events.
  •  
13.
  •  
14.
  • Karami, M. P., et al. (författare)
  • West Asian climate during the last millennium according to the EC-Earth model
  • 2020
  • Ingår i: Canadian journal of earth sciences (Print). - : Canadian Science Publishing. - 0008-4077 .- 1480-3313. ; 57:1, s. 102-113
  • Tidskriftsartikel (refereegranskat)abstract
    • West Asia is one of the most vulnerable regions to ongoing climate change but has been poorly investigated. Therefore, it is crucial to understand the impact of anthropogenic greenhouse gas, natural forcing, and internal climate variability on temperature and rainfall in this region. In this study, we focus on the climate of West Asia during the last millennium by using a transient simulation of the global earth system model EC-Earth (v3.1). The model performs well in terms of present-day temperature and precipitation patterns and their regional averages. Time series of yearly-mean precipitation and temperature of West Asia show that precipitation increases until the start of the Little Ice Age (1450-1850 CE) and subsequently decreases, whereas temperature shows a cooling trend during the entire last millennium. We first discuss the model output data for climate trends during two periods, 850-1450 CE and 1450-1850 CE. In 850-1450 CE, the largest wetting trend occurred in the eastern regions to the north of the Persian Gulf because of a westward shift of the Indian precipitation core and more moisture transport from the Arabian Sea. The precipitation trend in 1450-1850 CE had a different pattern with a drying trend in the west of the Caspian Sea and overall getting less wet compared with the first period. Temperature showed cooling trends for both periods with the largest values happening in the northern regions. The North Atlantic sea surface temperature cooling and the subsequent change in atmospheric circulation played a role in the wetting and cooling of West Asia. In the second part of the study, we remove the trends and discuss the multi-clecadal variability of West Asian climate. It was found that Atlantic multi-decadal and Pacific decadal oscillations strongly contributed to West Asian temperature variability. For West Asian precipitation variability, we found remote connections with the Nordic seas and tropical Pacific Ocean.
  •  
15.
  • Koenigk, Torben, et al. (författare)
  • Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model
  • 2017
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 49:1-2, s. 471-492
  • Tidskriftsartikel (refereegranskat)abstract
    • Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.
  •  
16.
  • Koenigk, Torben, et al. (författare)
  • Arctic climate change in 21st century CMIP5 simulations with EC-Earth
  • 2012
  • Ingår i: Climate Dynamics. - : Springer-Verlag New York. - 0930-7575 .- 1432-0894. ; 40:11-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic climate change is analyzed in anensemble of future projection simulations performed withthe global coupled climate model EC-Earth2.3. EC-Earthsimulates the twentieth century Arctic climate relativelywell but the Arctic is about 2 K too cold and the sea icethickness and extent are overestimated. In the twenty-firstcentury, the results show a continuation and strengtheningof the Arctic trends observed over the recent decades,which leads to a dramatically changed Arctic climate,especially in the high emission scenario RCP8.5. Theannually averaged Arctic mean near-surface temperatureincreases by 12 K in RCP8.5, with largest warming in theBarents Sea region. The warming is most pronounced inwinter and autumn and in the lower atmosphere. The Arcticwinter temperature inversion is reduced in all scenarios anddisappears in RCP8.5. The Arctic becomes ice free inSeptember in all RCP8.5 simulations after a rapid reductionevent without recovery around year 2060. Taking intoaccount the overestimation of ice in the twentieth century,our model results indicate a likely ice-free Arctic inSeptember around 2040. Sea ice reductions are most pronouncedin the Barents Sea in all RCPs, which lead to themost dramatic changes in this region. Here, surface heatfluxes are strongly enhanced and the cloudiness is substantiallydecreased. The meridional heat flux into theArctic is reduced in the atmosphere but increases in theocean. This oceanic increase is dominated by an enhancedheat flux into the Barents Sea, which strongly contributes tothe large sea ice reduction and surface-air warming in thisregion. Increased precipitation and river runoff lead to morefreshwater input into the Arctic Ocean. However, most ofthe additional freshwater is stored in the Arctic Ocean whilethe total Arctic freshwater export only slightly increases.
  •  
17.
  • Koenigk, Torben, et al. (författare)
  • Deep mixed ocean volume in the Labrador Sea in HighResMIP models
  • 2021
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 57:7-8, s. 1895-1918
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations from seven global coupled climate models performed at high and standard resolution as part of the high resolution model intercomparison project (HighResMIP) are analyzed to study deep ocean mixing in the Labrador Sea and the impact of increased horizontal resolution. The representation of convection varies strongly among models. Compared to observations from ARGO-floats and the EN4 data set, most models substantially overestimate deep convection in the Labrador Sea. In four out of five models, all four using the NEMO-ocean model, increasing the ocean resolution from 1 degrees to 1/4 degrees leads to increased deep mixing in the Labrador Sea. Increasing the atmospheric resolution has a smaller effect than increasing the ocean resolution. Simulated convection in the Labrador Sea is mainly governed by the release of heat from the ocean to the atmosphere and by the vertical stratification of the water masses in the Labrador Sea in late autumn. Models with stronger sub-polar gyre circulation have generally higher surface salinity in the Labrador Sea and a deeper convection. While the high-resolution models show more realistic ocean stratification in the Labrador Sea than the standard resolution models, they generally overestimate the convection. The results indicate that the representation of sub-grid scale mixing processes might be imperfect in the models and contribute to the biases in deep convection. Since in more than half of the models, the Labrador Sea convection is important for the Atlantic Meridional Overturning Circulation (AMOC), this raises questions about the future behavior of the AMOC in the models.
  •  
18.
  • Koenigk, Torben, et al. (författare)
  • Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas
  • 2019
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 52:5-6, s. 3111-3137
  • Tidskriftsartikel (refereegranskat)abstract
    • Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models have been used in order to evaluate the respective impact of the observed Arctic sea ice and sea surface temperature (SST) variations on air temperature variations in mid and high latitude land areas. Two sets of experiments have been designed; in the first set (EXP1), observed daily sea ice concentration and SST variations are used as lower boundary forcing over 1982-2014 while in the second set (EXP2) the SST variations are replaced by the daily SST climatology. The observed winter 2m air temperature (T2m) variations are relatively well reproduced in a number of mid and high latitude land areas in EXP1, with best agreement in southwestern North America and northern Europe. Sea ice variations are important for the interannual T2m variations in northern Europe but have limited impact on all other mid and high latitude land regions. In particular, sea ice variations do not contribute to the observed opposite variations in the Arctic and mid latitude in our model experiments. The spread across ensemble members is large and many ensemble members are required to reproduce the observed T2m variations over northern Europe in our models. The amplitude of T2m anomalies in the coldest observed winters over northern Europe is not reproduced by our multi-model ensemble means. However, the sea ice conditions in these respective winters and mainly the thermodynamic response to the ice anomalies lead to an enhanced likelihood for occurrence of colder than normal winters and extremely cold winters. Still, the main reason for the observed extreme cold winters is internal atmospheric dynamics. The coldest simulated northern European winters in EXP1 and EXP2 between 1982 and 2014 show the same large scale T2m and atmospheric circulation anomaly patterns as the observed coldest winters, indicating that the models are well able to reproduce the processes, which cause these cold anomalies. The results are robust across all six models used in this study.
  •  
19.
  • Koenigk, Torben, et al. (författare)
  • Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth
  • 2013
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 42:11-12, s. 3101-3120
  • Tidskriftsartikel (refereegranskat)abstract
    • The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.
  •  
20.
  • Koenigk, Torben, et al. (författare)
  • On the contribution of internal climate variability to European future climate trends
  • 2020
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 72:1, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Large historical and future ensemble simulations from the Max-Planck Institute and the Canadian Earth System Models and from CMIP5 have been analysed to investigate the uncertainty due to internal variability in multi-decadal temperature and precipitation trends over Europe. Internal variability dominates the uncertainties in temperature and precipitation trends in all seasons at 30-year time scales. Locally, seasonal 30-year temperature trends deviate up to +/- 3 degrees C from the ensemble mean trend. Thus, in the entire of Europe, local seasonal temperature changes until year 2050 from below -1 degrees C up to more than 4 degrees C are possible according to the model results. Up to 30% of all ensemble members show negative temperature trends until year 2050 in winter, up to 10% of the members in summer. Uncertainties of 30-year precipitation trends due to internal variability exceed the trends almost everywhere in Europe. Only in few European regions more than 75% of the members agree on the sign of the change until year 2050. In southern Sweden, minimum and maximum winter (summer) temperature trends in the next 30years differ with up to 7 degrees C (5 degrees C) between individual members of the large model ensembles. Large positive temperature trends are linked to positive (negative) precipitation trends in winter (summer) in southern Sweden. This variability is attributed to the variability in large scale atmospheric circulation trends, mainly due to internal atmospheric variability. We find only weak linkages between the variability of temperature trends and the dominant decadal to multi-decadal climate modes. This indicates that there is limited potential to predict the multi-decadal variability in climate trends. The main findings from our study are robust across the large ensembles from the different models used in this study but at the local scale, the results depend also on the choice of the model.
  •  
21.
  • Koenigk, Torben, et al. (författare)
  • Regional Arctic sea ice variations as predictor for winter climate conditions
  • 2016
  • Ingår i: Climate Dynamics. - : SPRINGER. - 0930-7575 .- 1432-0894. ; 46:1-2, s. 317-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980-2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO-negative after low ice-but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.
  •  
22.
  • Koenigk, Torben, et al. (författare)
  • Towards normal Siberian winter temperatures?
  • 2019
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418 .- 1097-0088. ; 39:11, s. 4567-4574
  • Tidskriftsartikel (refereegranskat)abstract
    • Siberia is a region where despite global warming a winter cooling trend has been observed over last decades. This cooling trend and its potential linkage to Arctic sea ice loss are controversially discussed. However, recent winters have not been taken into account so far. Here, we analyse ERA-Interim reanalysis data until 2017 and ERA20C reanalysis to investigate the robustness of the winter surface air temperature trends to updated and extended time periods. Our results show that winter temperatures in Siberia were above normal after 2013 leading to strongly reduced cooling trends since 1980. The trend before 2014 was dominated by four cold winters between 2010 and 2013. These cold winters were mainly caused by strong negative phases of the North Atlantic Oscillation (NAO), except for the winter 2011/2012, where the NAO was positive and a strongly negative phase of the Pacific Decadal Oscillation (PDO) in combination with low sea ice in the Barents Sea caused the cold winter. Both NAO and PDO shift from more negative to positive phases in 2014 and contribute to a return to warmer Siberian temperatures. Furthermore, the NAO shows no trend between 1980 and 2017 indicating that the suggested linkage between Arctic sea ice loss and a negative trend in this mode is not robust. However, continuously low Arctic sea ice in recent years and a slightly negative trend in the PDO since 1980 contribute to the remaining observed cold trends over parts of Eurasia between 1980 and 2017.
  •  
23.
  • Malinauskaite, Laura, et al. (författare)
  • Connecting the dots : An interdisciplinary perspective on climate change effects on whales and whale watching in Skjálfandi Bay, Iceland
  • 2022
  • Ingår i: Ocean and Coastal Management. - : Elsevier BV. - 0964-5691 .- 1873-524X. ; 226
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents a synthesis of some of the interdisciplinary work from the ARCPATH project that focuses on the effects of climate change on Arctic social-ecological systems. It does so through the prism of whales and their recreational ecosystem services (ES). Whales present a group of species that are vulnerable to climate change and, at the same time, are central to the economies, cultures, and identities of many Arctic coastal communities. One such community is the town of Húsavík in Skjálfandi Bay, Iceland. The paper conducts an initial literature review to examine the effects of climate change on whales, globally, before using these findings and site-specific data from climate change modelling, whale observations from whale watching boats and whale watching trip records to investigate possible future impacts on whale watching in Skjálfandi Bay. The literature review identifies three categories of impacts on whales due to climate change, which concern changing distributions and migration, prey availability, and sea-ice and ocean temperature. Linear regression models identify statistically significant relationships between sea-surface temperatures (SST) and cetacean sightings for minke whales, blue whales and white-beaked-dolphins over the period 1995 to 2017. These species appear to have changed their usual feeding areas, and the results imply that further increases in SST are likely to further affect whale distributions. Future climate scenarios indicate that at least 2 °C of SST warming in Skjálfandi Bay up to 2050 might be inevitable regardless of the future emissions scenario, which implies nearly certain change that would require adaptation. The reliance of the local tourism sector on whale watching makes Húsavík vulnerable to the effects of climate change on whales. The results of this interdisciplinary inquiry emphasize the interconnectedness of different components of social-ecological systems and calls for adaptation planning that would enhance the resilience of local community to climate change and conservation measures that could enhance the protection of whales beyond the scope of the current whale sanctuary in Skjálfandi Bay.
  •  
24.
  • Sicard, Marie, et al. (författare)
  • Similarities and Differences in Arctic Sea-Ice Loss During the Solar-Forced Last Interglacial Warming (127 Kyr BP) and CO2-Forced Future Warming
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a 7-member global circulation model ensemble from CMIP6/PMIP4, we compare the regional distribution of Arctic sea ice between a simulation representing the Last Interglacial (LIG) climate, with solar-forced warming, and an idealized future CO2-forced simulation with a similar annual sea-ice volume. The two simulations feature small but robust differences in the Central Arctic and Baffin Bay during summer, and larger differences at the sea-ice margins in the sub-Arctic Atlantic and North Pacific sectors during winter. Our results indicate that, under both forcings, sea ice persists north of Greenland until late summer, suggesting that the assumption that this region is the Last Ice Area is robust and holds for other climate states. However, we show that processes influencing sea-ice distribution in winter, such as Atlantification and sea-ice drift, differ and need to be further investigated.
  •  
25.
  • Takano, Yohei, et al. (författare)
  • Simulations of ocean deoxygenation in the historical era : insights from forced and coupled models
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean deoxygenation due to anthropogenic warming represents a major threat to marine ecosystems and fisheries. Challenges remain in simulating the modern observed changes in the dissolved oxygen (O2). Here, we present an analysis of upper ocean (0-700m) deoxygenation in recent decades from a suite of the Coupled Model Intercomparison Project phase 6 (CMIP6) ocean biogeochemical simulations. The physics and biogeochemical simulations include both ocean-only (the Ocean Model Intercomparison Project Phase 1 and 2, OMIP1 and OMIP2) and coupled Earth system (CMIP6 Historical) configurations. We examine simulated changes in the O2 inventory and ocean heat content (OHC) over the past 5 decades across models. The models simulate spatially divergent evolution of O2 trends over the past 5 decades. The trend (multi-model mean and spread) for upper ocean global O2 inventory for each of the MIP simulations over the past 5 decades is 0.03 ± 0.39×1014 [mol/decade] for OMIP1, −0.37 ± 0.15×1014 [mol/decade] for OMIP2, and −1.06 ± 0.68×1014 [mol/decade] for CMIP6 Historical, respectively. The trend in the upper ocean global O2 inventory for the latest observations based on the World Ocean Database 2018 is −0.98×1014 [mol/decade], in line with the CMIP6 Historical multi-model mean, though this recent observations-based trend estimate is weaker than previously reported trends. A comparison across ocean-only simulations from OMIP1 and OMIP2 suggests that differences in atmospheric forcing such as surface wind explain the simulated divergence across configurations in O2 inventory changes. Additionally, a comparison of coupled model simulations from the CMIP6 Historical configuration indicates that differences in background mean states due to differences in spin-up duration and equilibrium states result in substantial differences in the climate change response of O2. Finally, we discuss gaps and uncertainties in both ocean biogeochemical simulations and observations and explore possible future coordinated ocean biogeochemistry simulations to fill in gaps and unravel the mechanisms controlling the O2 changes.
  •  
26.
  • Thomas, Manu Anna, et al. (författare)
  • Snowfall distribution and its response to the Arctic Oscillation : an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations
  • 2019
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 12:8, s. 3759-3772
  • Tidskriftsartikel (refereegranskat)abstract
    • A realistic representation of snowfall in general circulation models (GCMs) of global climate is important to accurately simulate snow cover, surface albedo, high-latitude precipitation and thus the surface radiation budget. Hence, in this study, we evaluate snowfall in a range of climate models run at two different resolutions by comparing to the latest estimates of snowfall from the CloudSat Cloud Profiling Radar over the northern latitudes. We also evaluate whether the finer-resolution versions of the GCMs simulate the accumulated snowfall better than their coarse-resolution counterparts. As the Arctic Oscillation (AO) is the prominent mode of natural variability in the polar latitudes, the snowfall variability associated with the different phases of the AO is examined in both models and in our observational reference. We report that the statistical distributions of snowfall differ considerably between the models and CloudSat observations. While CloudSat shows an exponential distribution of snowfall, the models show a Gaussian distribution that is heavily positively skewed. As a result, the 10th and 50th percentiles, representing the light and median snowfall, are overestimated by up to factors of 3 and 1.5, respectively, in the models investigated here. The overestimations are strongest during the winter months compared to autumn and spring. The extreme snowfall represented by the 90th percentiles, on the other hand, is positively skewed, underestimating the snowfall estimates by up to a factor of 2 in the models in winter compared to the CloudSat estimates. Though some regional improvements can be seen with increased spatial resolution within a particular model, it is not easy to identify a specific pattern that holds across all models. The characteristic snow- fall variability associated with the positive phase of AO over Greenland Sea and central Eurasian Arctic is well captured by the models.
  •  
27.
  • Tian, Tian, et al. (författare)
  • Benefits of sea ice initialization for the interannual-to-decadal climate prediction skill in the Arctic in EC-Earth3
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:7, s. 4283-4305
  • Tidskriftsartikel (refereegranskat)abstract
    • A substantial part of Arctic climate predictability at interannual timescales stems from the knowledge of the initial sea ice conditions. Among all sea ice properties, its volume, which is a product of sea ice concentration (SIC) and thickness (SIT), is the most responsive parameter to climate change. However, the majority of climate prediction systems are only assimilating the observed SIC due to lack of long-term reliable global observation of SIT. In this study, the EC-Earth3 Climate Prediction System with anomaly initialization to ocean, SIC and SIT states is developed. In order to evaluate the regional benefits of specific initialized variables, three sets of retrospective ensemble prediction experiments are performed with different initialization strategies: ocean only; ocean plus SIC; and ocean plus SIC and SIT initialization. In the Atlantic Arctic, the Greenland–Iceland–Norway (GIN) and Barents seas are the two most skilful regions in SIC prediction for up to 5–6 lead years with ocean initialization; there are re-emerging skills for SIC in the Barents and Kara seas in lead years 7–9 coinciding with improved skills of sea surface temperature (SST), reflecting the impact of SIC initialization on ocean–atmosphere interactions for interannual-to-decadal timescales. For the year 2–9 average, the region with significant skill for SIT is confined to the central Arctic Ocean, covered by multi-year sea ice (CAO-MYI). Winter preconditioning with SIT initialization increases the skill for September SIC in the eastern Arctic (e.g. Kara, Laptev and East Siberian seas) and in turn improve the skill of air surface temperature locally and further expanded over land. SIT initialization outperforms the other initialization methods in improving SIT prediction in the Pacific Arctic (e.g. East Siberian and Beaufort seas) in the first few lead years. Our results suggest that as the climate warming continues and the central Arctic Ocean might become seasonal ice free in the future, the controlling mechanism for decadal predictability may thus shift from sea ice volume to ocean-driven processes.
  •  
28.
  • Wyser, Klaus, et al. (författare)
  • The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:7, s. 5781-5796
  • Tidskriftsartikel (refereegranskat)abstract
    • The Swedish Meteorological and Hydrological Institute used the global climate model EC-Earth3 to perform a large ensemble of simulations (SMHI-LENS). It consists of 50 members, covers the period 1970 to 2100, and comprises the SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-8.5 scenarios. Thus, it is currently the only large ensemble that allows for analyzing the effect of delayed mitigation actions versus no mitigation efforts and versus earlier efforts leading to similar radiative forcing at the year 2100. We describe the set-up of the SMHI-LENS in detail and provide first examples of its application. The ensemble mean future changes in key variables in the atmosphere and ocean are analyzed and compared against the variability across the ensemble members. In agreement with other large-ensemble simulations, we find that the future changes in the near-surface temperature are more robust than those for precipitation or sea level pressure. As an example of a possible application of the SMHI-LENS, we analyze the probability of exceeding specific global surface warming levels in the different scenarios. None of the scenarios is able to keep global warming in the 21st century below 1.5 degrees C. In SSP1-1.9 there is a probability of approximately 70% to stay below 2 degrees C warming, while all other SSPs exceed this target in every single member of SMHI-LENS during the course of the century. We also investigate the point in time when the SSP5-8.5 and SSP5-3.4 ensembles separate, i.e., when their differences become significant, and likewise when the SSP5-3.4-OS and SSP4-3.4 ensembles become similar. Last, we show that the time of emergence of a separation between different scenarios can vary by several decades when reducing the ensemble size to 10 members.
  •  
29.
  • Wyser, Klaus, et al. (författare)
  • Warmer climate projections in EC-Earth3-Veg : the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate projections for the 21st century for CMIP6 are warmer than those for CMIP5 despite nominally identical instantaneous radiative forcing. Many climate modeling groups attribute the stronger warming in the CMIP6 projections to the higher climate sensitivity of the new generation of climate models, but here we demonstrate that also changes in the forcing datasets can play an important role, in particular the prescribed concentrations of greenhouse gases (GHG) that are used to force the models. In the EC-Earth3-Veg model the effective radiative forcing (ERF) is reduced by 1.4 W m(-2) when the GHG concentrations from SSP5-8.5 (used in CMIP6) are replaced by the GHG concentrations from RCP8.5 (used in CMIP5), and similar yet smaller reductions are seen for the SSP2-4.5/RCP4.5 and SSP1-2.6/RCP2.6 scenario pairs. From the reduced ERF we can estimate the temperature at the end of the century in a full climate simulation with the CMIP6 version of the EC-Earth model but using CMIP5 GHG concentrations instead. For the new SSP5-8.5 and SSP2-4.5 scenarios we find that 50% or more of the temperature increase from CMIP5 to CMIP6 at the end of the century is due to changes in the prescribed GHG concentrations. The implication is that CMIP5 and CMIP6 projections for the 21st century are difficult to compare with each other not only as models differ but also as the forcing conditions are not equal. Therefore, the communication of CMIP6 results to the impact, mitigation and adaptation communities has to be carefully formulated, taking into account the role of the updated GHG concentrations when interpreting the warmer climate projections for the 21st century.
  •  
30.
  • Zhang, Wenxin, et al. (författare)
  • Tundra shrubification and tree-line advance amplify arctic climate warming : results from an individual-based dynamic vegetation model
  • 2013
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy