SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koga Ryuichi) "

Sökning: WFRF:(Koga Ryuichi)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bisch, Gaelle, et al. (författare)
  • Genome Evolution of Bartonellaceae Symbionts of Ants at the Opposite Ends of the Trophic Scale
  • 2018
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 10:7, s. 1687-1704
  • Tidskriftsartikel (refereegranskat)abstract
    • Many insects rely on bacterial symbionts to supply essential amino acids and vitamins that are deficient in their diets, but metabolic comparisons of closely related gut bacteria in insects with different dietary preferences have not been performed. Here, we demonstrate that herbivorous ants of the genus Dolichoderus from the Peruvian Amazon host bacteria of the family Bartonellaceae, known for establishing chronic or pathogenic infections in mammals. We detected these bacteria in all studied Dolichoderus species, and found that they reside in the midgut wall, that is, the same location as many previously described nutritional endosymbionts of insects. The genomic analysis of four divergent strains infecting different Dolichoderus species revealed genes encoding pathways for nitrogen recycling and biosynthesis of several vitamins and all essential amino acids. In contrast, several biosynthetic pathways have been lost, whereas genes for the import and conversion of histidine and arginine to glutamine have been retained in the genome of a closely related gut bacterium of the carnivorous ant Harpegnathos saltator. The broad biosynthetic repertoire in Bartonellaceae of herbivorous ants resembled that of gut bacteria of honeybees that likewise feed on carbohydrate-rich diets. Taken together, the broad distribution of Bartonellaceae across Dolichoderus ants, their small genome sizes, the specific location within hosts, and the broad biosynthetic capability suggest that these bacteria are nutritional symbionts in herbivorous ants. The results highlight the important role of the host nutritional biology for the genomic evolution of the gut microbiota-and conversely, the importance of the microbiota for the nutrition of hosts.
  •  
2.
  • Richards, Stephen, et al. (författare)
  • Genome Sequence of the Pea Aphid Acyrthosiphon pisum
  • 2010
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 8:2, s. e1000313-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy