SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kogner Per) "

Sökning: WFRF:(Kogner Per)

  • Resultat 1-50 av 78
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chand, Damini, 1986, et al. (författare)
  • Cell culture and Drosophila model systems define three classes of anaplastic lymphoma kinase mutations in neuroblastoma.
  • 2013
  • Ingår i: Disease models & mechanisms. - Cambridge, UK : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 6:2, s. 373-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a childhood extracranial solid tumor which is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly required characterisation of these mutations in terms of their response to ALK tyrosine kinase inhibitors (TKIs). Here, we report the identification and characterisation of two novel neuroblastoma ALK mutations (A1099T and 1464STOP) which we have investigated together with several previously reported but uncharacterised ALK mutations (T1087I, D1091N, T1151M, M1166R, F1174I and A1234T). In order to understand the potential role of these ALK mutations in neuroblastoma progression we have employed cell culture based systems together with the model organism Drosophila as a readout for ligand-independent activity. Mutation of ALK at position F1174I generates a gain-of-function receptor capable of activating intracellular targets, such as ERK (extracellular signal regulated kinase) and STAT3 (signal transducer and activator of transcription 3) in a ligand independent manner. Analysis of these previously uncharacterised ALK mutants and comparison with ALK(F1174) mutants suggests that ALK mutations observed in neuroblastoma fall into three classes. These are: (i) gain-of-function ligand independent mutations such as ALK(F1174), (ii) kinase-dead ALK mutants, e.g. ALK(I1250T)(Schonherr et al 2011a) or (iii) ALK mutations which are ligand-dependent in nature. Irrespective of the nature of the observed ALK mutants, in every case the activity of the mutant ALK receptors could be abrogated by the ALK inhibitor crizotinib (PF-02341066, Xalkori), albeit with differing levels of sensitivity.
  •  
2.
  • de Ståhl, Teresita Diaz, et al. (författare)
  • The Swedish childhood tumor biobank : systematic collection and molecular characterization of all pediatric CNS and other solid tumors in Sweden
  • 2023
  • Ingår i: Journal of Translational Medicine. - : BioMed Central (BMC). - 1479-5876. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • The Swedish Childhood Tumor Biobank (BTB) is a nonprofit national infrastructure for collecting tissue samples and genomic data from pediatric patients diagnosed with central nervous system (CNS) and other solid tumors. The BTB is built on a multidisciplinary network established to provide the scientific community with standardized biospecimens and genomic data, thereby improving knowledge of the biology, treatment and outcome of childhood tumors. As of 2022, over 1100 fresh-frozen tumor samples are available for researchers. We present the workflow of the BTB from sample collection and processing to the generation of genomic data and services offered. To determine the research and clinical utility of the data, we performed bioinformatics analyses on next-generation sequencing (NGS) data obtained from a subset of 82 brain tumors and patient blood-derived DNA combined with methylation profiling to enhance the diagnostic accuracy and identified germline and somatic alterations with potential biological or clinical significance. The BTB procedures for collection, processing, sequencing, and bioinformatics deliver high-quality data. We observed that the findings could impact patient management by confirming or clarifying the diagnosis in 79 of the 82 tumors and detecting known or likely driver mutations in 68 of 79 patients. In addition to revealing known mutations in a broad spectrum of genes implicated in pediatric cancer, we discovered numerous alterations that may represent novel driver events and specific tumor entities. In summary, these examples reveal the power of NGS to identify a wide number of actionable gene alterations. Making the power of NGS available in healthcare is a challenging task requiring the integration of the work of clinical specialists and cancer biologists; this approach requires a dedicated infrastructure, as exemplified here by the BTB.
  •  
3.
  • Sundquist, Fredrik, et al. (författare)
  • A Phase II Trial of a Personalized, Dose-Intense Administration Schedule of 177Lutetium-DOTATATE in Children With Primary Refractory or Relapsed High-Risk Neuroblastoma–LuDO-N
  • 2022
  • Ingår i: Frontiers in Pediatrics. - : Frontiers Media SA. - 2296-2360. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Half the children with high-risk neuroblastoma die with widespread metastases. Molecular radiotherapy is an attractive systemic treatment for this relatively radiosensitive tumor. 131I-mIBG is the most widely used form in current use, but is not universally effective. Clinical trials of 177Lutetium DOTATATE have so far had disappointing results, possibly because the administered activity was too low, and the courses were spread over too long a period of time, for a rapidly proliferating tumor. We have devised an alternative administration schedule to overcome these limitations. This involves two high-activity administrations of single agent 177Lu-DOTATATE given 2 weeks apart, prescribed as a personalized whole body radiation absorbed dose, rather than a fixed administered activity. “A phase II trial of 177Lutetium-DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma - LuDO-N” (EudraCT No: 2020-004445-36, ClinicalTrials.gov Identifier: NCT04903899) evaluates this new dosing schedule. Methods: The LuDO-N trial is a phase II, open label, multi-center, single arm, two stage design clinical trial. Children aged 18 months to 18 years are eligible. The trial is conducted by the Nordic Society for Pediatric Hematology and Oncology (NOPHO) and it has been endorsed by SIOPEN (https://www.siopen.net). The Karolinska University Hospital, is the sponsor of the LuDO-N trial, which is conducted in collaboration with Advanced Accelerator Applications, a Novartis company. All Scandinavian countries, Lithuania and the Netherlands participate in the trial and the UK has voiced an interest in joining in 2022. Results: The pediatric use of the Investigational Medicinal Product (IMP) 177Lu-DOTATATE, as well as non-IMPs SomaKit TOC® (68Ga-DOTATOC) and LysaKare® amino acid solution for renal protection, have been approved for pediatric use, within the LuDO-N Trial by the European Medicines Agency (EMA). The trial is currently recruiting. Recruitment is estimated to be finalized within 3–5 years. Discussion: In this paper we present the protocol of the LuDO-N Trial. The rationale and design of the trial are discussed in relation to other ongoing, or planned trials with similar objectives. Further, we discuss the rapid development of targeted radiopharmaceutical therapy and the future perspectives for developing novel therapies for high-risk neuroblastoma and other pediatric solid tumors.
  •  
4.
  • Tesi, Bianca, et al. (författare)
  • Diagnostic yield and clinical impact of germline sequencing in children with CNS and extracranial solid tumors : a nationwide, prospective Swedish study
  • 2024
  • Ingår i: The Lancet Regional Health. - : Elsevier. - 2666-7762. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundChildhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors.MethodsgWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients.FindingsThe prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35).InterpretationOverall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients.
  •  
5.
  • Tesi, Bianca, et al. (författare)
  • Diagnostic yield and clinical impact of germline sequencing in children with CNS and extracranial solid tumors : a nationwide, prospective Swedish study
  • 2024
  • Ingår i: The Lancet Regional Health. - : Elsevier. - 2666-7762. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors.Methods: gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients.Findings: The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35).Interpretation: Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients.Funding: The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.
  •  
6.
  • Zirath, Hanna, et al. (författare)
  • MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:25, s. 10258-10263
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.
  •  
7.
  • Abel, Frida, 1974, et al. (författare)
  • A 6-gene signature identifies four molecular subgroups of neuroblastoma
  • 2011
  • Ingår i: Cancer Cell International. - : Springer Science and Business Media LLC. - 1475-2867. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p
  •  
8.
  • Abel, Frida, 1974, et al. (författare)
  • Gain of chromosome arm 17q is associated with unfavourable prognosis in neuroblastoma, but does not involve mutations in the somatostatin receptor 2(SSTR2) gene at 17q24.
  • 1999
  • Ingår i: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 81:8, s. 1402-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of chromosome arm 1p and amplification of the MYCN oncogene are well-recognized genetic alterations in neuroblastoma cells. Recently, another alteration has been reported; gain of the distal part of chromosome arm 17q. In this study 48 neuroblastoma tumours were successfully analysed for 17q status in relation to known genetic alterations. Chromosome 17 status was detected by fluorescence in situ hybridization (FISH). Thirty-one of the 48 neuroblastomas (65%) showed 17q gain, and this was significantly associated with poor prognosis. As previously reported, 17q gain was significantly associated with metastatic stage 4 neuroblastoma and more frequently detected than both deletion of chromosome arm 1p and MYCN amplification in tumours of all stages. 17q gain also showed a strong correlation to survival probability (P = 0.0009). However, the most significant correlation between 17q gain and survival probability was observed in children with low-stage tumours (stage 1, 2, 3 and 4S), with a survival probability of 100% at 5 years from diagnosis for children with tumours showing no 17q gain compared to 52.5% for those showing 17q gain (P = 0.0021). This suggests that 17q gain as a prognostic factor plays a more crucial role in low-stage tumours. Expression of the somatostatin receptor 2 (SSTR2), localized in chromosome region 17q24, has in previous studies been shown to be positively related to survival in neuroblastoma. A point mutation in the SSTR2 gene has earlier been reported in a human small-cell lung cancer. In this study, mutation screening of the SSTR2 gene in 43 neuroblastoma tumours was carried out with polymerase chain reaction-based single-stranded conformation polymorphism/heteroduplex (SSCP/HD) and DNA sequencing, and none of the tumours showed any aberrations in the SSTR2 gene. These data suggest that mutations in the SSTR2 gene are uncommon in neuroblastoma tumours and do not correlate with either the 17q gain often seen or the reason some tumours do not express SSTR2 receptors. Overall, this study indicates that gain of chromosome arm 17q is the most frequently occurring genetic alteration, and that it is associated with established prognostic factors.
  •  
9.
  • Abel, Frida, 1974, et al. (författare)
  • Imbalance of the mitochondrial pro- and anti-apoptotic mediators in neuroblastoma tumours with unfavourable biology.
  • 2005
  • Ingår i: European journal of cancer (Oxford, England : 1990). - : Elsevier BV. - 0959-8049. ; 41:4, s. 635-46
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been proposed that a lack of apoptosis plays an important role in neuroblastoma (NB) progression. We therefore screened cDNA array filters, including 198 apoptotic genes, in order to identify mRNA transcripts that are differentially expressed in tumours with unfavourable versus favourable biology. Twenty-one genes were analysed further using real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Significantly lower levels of DNCL1 (PIN; P(c)(corrected) = 0.0054) and NTRK1 (TrkA; P(c) = 0.039) were found in NB tumours with unfavourable biology. In addition, BID, BCL2, APAF1, CASP2, CASP3 and CASP9 were found to be preferentially expressed in tumours with favourable biology, whereas CDKN1A (p21), IL2RA, and MCL1, were found to be preferentially expressed in NB tumours with unfavourable biology. In conclusion, mRNA levels of transcripts encoding pro-apoptotic mediators of the mitochondrial apoptotic pathway were found to be expressed to a lower extent in tumours with unfavourable biology. Our data also suggest that the mitochondrial pathway is suppressed in advanced stages of NB tumours, due to an imbalance between anti-apoptotic and pro-apoptotic mediators which is a finding that may have therapeutic significance.
  •  
10.
  • Almstedt, Elin, 1988-, et al. (författare)
  • Integrative discovery of treatments for high-risk neuroblastoma
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.
  •  
11.
  • Astuti, D, et al. (författare)
  • SLIT2 promoter methylation analysis in neuroblastoma, Wilms' tumour and renal cell carcinoma.
  • 2004
  • Ingår i: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 90:2, s. 515-21
  • Tidskriftsartikel (refereegranskat)abstract
    • The 3p21.3 RASSF1A tumour suppressor gene (TSG) provides a paradigm for TSGs inactivated by promoter methylation rather than somatic mutations. Recently, we identified frequent promoter methylation without somatic mutations of SLIT2 in lung and breast cancers, suggesting similarities between SLIT2 and RASSF1A TSGs. Epigenetic inactivation of RASSF1A was first described in lung and breast cancers and subsequently in a wide range of human cancers including neuroblastoma, Wilms' tumour and renal cell carcinoma (RCC). These findings prompted us to investigate SLIT2 methylation in these three human cancers. We analysed 49 neuroblastomas (NBs), 37 Wilms' tumours and 48 RCC, and detected SLIT2 promoter methylation in 29% of NB, 38% of Wilms' tumours and 25% of RCC. Previously, we had demonstrated frequent RASSF1A methylation in the same tumour series and frequent CASP8 methylation in the NB and Wilms' tumour samples. However, there was no significant association between SLIT2 promoter methylation and RASSF1A or CASP8 methylation in NB and RCC. In Wilms' tumour, there was a trend for a negative association between RASSF1A and SLIT2 methylation, although this did not reach statistical significance. No associations were detected between SLIT2 promoter methylation and specific clinicopathological features in the tumours analysed. These findings implicate SLIT2 promoter methylation in the pathogenesis of both paediatric and adult cancers and suggest that further investigations of SLIT2 in other tumour types should be pursued. However, epigenetic inactivation of SLIT2 is less frequent than RASSF1A in the tumour types analysed.
  •  
12.
  • Bandaru, Sashidar, et al. (författare)
  • Filamin A increases aggressiveness of human neuroblastoma.
  • 2022
  • Ingår i: Neuro-oncology Advances. - : Oxford University Press (OUP). - 2632-2498. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The actin-binding protein filamin A (FLNA) regulates oncogenic signal transduction important for tumor growth, but the role of FLNA in the progression of neuroblastoma (NB) has not been explored.We analyzed FLNA mRNA expression in the R2 NB-database and FLNA protein expression in human NB tumors. We then silenced FLNA expression in human SKNBE2 and IMR32 NB cells by lentiviral vector encoding shRNA FLNA and assayed the cells for proliferation, migration, colony, spheroid formation, and apoptosis. SKNBE2 xenografts expressing or lacking FLNA in BALB/c nude mice were analyzed by both routine histopathology and immunohistochemistry.We observed shorter patient survival with higher expression of FLNA mRNA than patients with lower FLNA mRNA expression, and high-risk NB tumors expressed higher FLNA levels. Overexpression of FLNA increased proliferation of SH-SY5 NB cells. NB cell lines transfected with siRNA FLNA proliferated and migrated less, expressed lower levels of phosphorylated AKT and ERK1/2, formed smaller colonies and spheroids, as well as increased apoptosis. After inoculation of SKNBE2 cells infected with lentivirus expressing shRNA FLNA, size of NB tumors and number of proliferating cells were decreased. Furthermore, we identified STAT3 as an interacting partner of FLNA. Silencing FLNA mRNA reduced levels of NF-κB, STAT3 and MYCN, and increased levels of p53 and cleaved caspase 3.Inhibition of FLNA impaired NB cell signaling and function and reduced NB tumor size in vivo, suggesting that drugs targeting either FLNA or its interaction with STAT3 may be useful in the treatment of NB.
  •  
13.
  • Baryawno, Ninib, et al. (författare)
  • Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target
  • 2011
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 121:10, s. 4043-4055
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE(2), which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did riot affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor.
  •  
14.
  • Baryawno, Ninib, et al. (författare)
  • Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets
  • 2008
  • Ingår i: Neuro-Oncology. - : Oxford University Press (OUP). - 1522-8517 .- 1523-5866. ; 10:5, s. 661-674
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostaglandin E(2) (PGE(2)) has been shown to play important roles in several aspects of tumor development and progression. PGE(2) is synthesized from arachidonic acid by cyclooxygenases (COX) and prostaglandin E synthases (PGES) and mediates its biological activity through binding to the four prostanoid receptors EP(1) through EP(4). In this study, we show for the first time that medulloblastoma (MB), the most common malignant childhood brain tumor, expresses high levels of COX-2, microsomal prostaglandin E synthase-1, and EP(1) through EP(4) and secretes PGE(2). PGE(2) and the EP(2) receptor agonist butaprost stimulated MB cell proliferation. Treatment of MB cells with COX inhibitors suppressed PGE(2) production and induced caspase-dependent apoptosis. Similarly, specific COX-2 silencing by small interfering RNA inhibited MB cell growth. EP(1) and EP(3) receptor antagonists ONO-8713 and ONO-AE3-240, but not the EP(4) antagonists ONO-AE3-208 and AH 23848, inhibited tumor cell proliferation, indicating the significance of EP(1) and EP(3) but not EP(4) for MB growth. Administration of COX inhibitors at clinically achievable nontoxic concentrations significantly inhibited growth of established human MB xenografts. Apoptosis was increased, proliferation was reduced, and angiogenesis was inhibited in MBs treated with COX inhibitors. This study suggests that PGE(2) is important for MB growth and that therapies targeting the prostanoid metabolic pathway are potentially beneficial and should be tested in clinical settings for treatment of children with MB.  
  •  
15.
  • Boman, Krister K, et al. (författare)
  • Serious illness in childhood : the different threats of cancer and diabetes from a parent perspective.
  • 2004
  • Ingår i: Journal of Pediatrics. - : Elsevier BV. - 0022-3476 .- 1097-6833. ; 145, s. 373-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives To compare the incidence of disease-related distress symptoms in parents of children with cancer and diabetes. Study design A total of 675 parents of patients with cancer, patients with diabetes, and control subjects were assessed for 11 distress symptom clusters. Patient and control parent mean differences were tested by 2-tailed t tests, illness groups were compared by means of analysis of variance. Distress variations as a function of time since diagnosis were examined by regression analysis. Results The distress levels of patient parents exceeded those of control parents for global distress (P < .0001) and for most symptom subcategories. Distress levels of parents of patients with cancer (CP) significantly exceeded those of parents of patients with diabetes (DP) in anxiety (P < .0001), physical and psychologic distress (P < .0001), depression (P < .005), and loneliness (P < .05). Levels in DP matched those of CP in uncertainty, loss of control/the patient, self-esteem, disease-related fear, and sleep disturbances. Distress levels were lower in CP most distant hi time from diagnosis, whereas DP showed a reversed trend. Conclusions Parental distress patterns in childhood illness depend on illness type and time passed since diagnosis. Symptom profiles verify the need for psyehosocial attention at the initial shock after the cancer diagnosis and indicate long-term consequences for many parents. In pediatric diabetes, the persistence or intensification of distress over time is of specific clinical relevance.
  •  
16.
  • Carén, Helena, 1979, et al. (författare)
  • Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours.
  • 2007
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827.
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 1p is frequently deleted in neuroblastoma (NB) tumours. The commonly deleted region has been narrowed down by loss of heterozygosity studies undertaken by different groups. Based on earlier mapping data, we have focused on a region on 1p36 (chr1: 7 765 595-11 019 814) and performed an analysis of 30 genes by exploring features such as epigenetic regulation, that is DNA methylation and histone deacetylation, mutations at the DNA level and mRNA expression. Treatment of NB cell lines with the histone deacetylase inhibitor trichostatin A led to increased gene transcription of four of the 30 genes, ERRFI1 (MIG-6), PIK3CD, RBP7 (CRBPIV) and CASZ1, indicating that these genes could be affected by epigenetic downregulation in NBs. Two patients with nonsynonymous mutations in the PIK3CD gene were detected. One patient harboured three variations in the same exon, and p.R188W. The other patient had the variation p.M655I. In addition, synonymous variations and one variation in an intronic sequence were also found. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NBs. One nonsynonymous mutation was also identified in the ERRFI1 gene, p.N343S, and one synonymous. None of the variations above were found in healthy control individuals. In conclusion, of the 30 genes analysed, the PIK3CD gene stands out as one of the most interesting for further studies of NB development and progression.British Journal of Cancer advance online publication, 16 October 2007; doi:10.1038/sj.bjc.6604032 www.bjcancer.com.
  •  
17.
  • Carén, Helena, 1979, et al. (författare)
  • High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours.
  • 2008
  • Ingår i: The Biochemical journal. - : Portland Press Ltd.. - 1470-8728 .- 0264-6021. ; 416:2, s. 153-9
  • Tidskriftsartikel (refereegranskat)abstract
    • ALK (anaplastic lymphoma kinase) is oncogenic in several tumours and has recently been identified as a predisposition gene for familial NB (neuroblastoma) harbouring mutations in the TKD (tyrosine kinase domain). We have analysed a large set of sporadic human NB primary tumours of all clinical stages for chromosomal re-arrangements using a CGH (comparative genomic hybridization) array (n=108) and mutations of the ALK gene (n=90), and expression of ALK and related genes (n=19). ALK amplification or in-gene re-arrangements were found in 5% of NB tumours and mutations were found in 11%, including two novel not previously published mutations in the TKD, c.3733T>A and c.3735C>A. DNA mutations in the TKD and gene amplifications were only found in advanced large primary tumours or metastatic tumours, and correlated with the expression levels of ALK and downstream genes as well as other unfavourable features, and poor outcome. The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.
  •  
18.
  • Carén, Helena, 1979, et al. (författare)
  • High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors; Four cases of homozygous deletions of the CDKN2A gene.
  • 2008
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets. Results Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors. Conclusion SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.
  •  
19.
  • Carén, Helena, 1979, et al. (författare)
  • High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset.
  • 2010
  • Ingår i: PNAS. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 107:9, s. 4323-4328
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of chromosomal aberrations is used to determine the prognosis of neuroblastomas (NBs) and to aid treatment decisions. MYCN amplification (MNA) alone is an incomplete poor prognostic factor, and chromosome 11q status has recently been included in risk classification. We analyzed 165 NB tumors using high-density SNP microarrays and specifically compared the high-risk groups defined by MNA (n = 37) and 11q-deletion (n = 21). Median patient age at diagnosis was 21 months for MNA tumors and 42 months for 11q-deletion tumors, and median survival time after diagnosis was 16 months for MNA and 40 months for 11q deletion. Overall survival (at 8 years) was approximately 35% in both groups. MNA and 11q deletion were almost mutually exclusive; only one case harbored both aberrations. The numbers of segmental aberrations differed significantly; the MNA group had a median of four aberrations, whereas the 11q-deletion group had 12. The high frequency of chromosomal breaks in the 11q-deletion group is suggestive of a chromosomal instability phenotype gene located in 11q; one such gene, H2AFX, is located in 11q23.3 (within the 11q-deletion region). Furthermore, in the groups with segmental aberrations without MNA or 11q deletion, the tumors with 17q gain have worse prognosis than those with segmental aberrations without 17q gain, which have a favorable outcome. This study has implications for therapy in different risk groups and stresses that genome-wide microarray analyses should be included in clinical management to fully evaluate risk, aid diagnosis, and guide treatment.
  •  
20.
  • Carén, Helena, 1979, et al. (författare)
  • Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma
  • 2011
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 11, s. 66-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes. Methods: In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation. Results: We present eight genes (KRT19, PRKCDBP, SCNN1A, POU2F2, TGFBI, COL1A2, DHRS3 and DUSP23) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes SCNN1A (p < 0.001), PRKCDBP (p < 0.001) and KRT19 (p < 0.01). Among these, the mRNA expression of KRT19 and PRKCDBP was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for KRT19 and fold change -2.4, p = 0.04 for PRKCDBP). Conclusions: In our study, a low methylation frequency of SCNN1A, PRKCDBP and KRT19 is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas.
  •  
21.
  • Carlson, Lena-Maria, et al. (författare)
  • Differentiation induced by physiological and pharmacological stimuli leads to increased antigenicity of human neuroblastoma cells
  • 2008
  • Ingår i: Cell Research. - : Springer Science and Business Media LLC. - 1748-7838 .- 1001-0602. ; 18:3, s. 398-411
  • Tidskriftsartikel (refereegranskat)abstract
    • Sympathetic neuronal differentiation is associated with favorable prognosis of neuroblastoma (NB), the most common extra-cranial solid tumor of early childhood. Differentiation agents have proved useful in clinical protocols of NB treatment, but using them as a sole treatment is not sufficient to induce tumor elimination in patients. Therefore, complementary approaches, such as immunotherapy, are warranted. Here we demonstrate that differentiation of NB cell lines and ex vivo isolated tumor cells in response to physiological or pharmacological stimuli is associated with acquisition of increased antigenicity. This manifests as increased expression of surface major histocompatibility class I complexes and ICAM-1 molecules and translates into increased sensitivity of NB cells to lysis by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The latter is paralleled by enhanced ability of differentiated cells to form immune conjugates and bind increased amounts of granzyme B to the cell surface. We demonstrate, for the first time, that, regardless of the stimulus applied, the differentiation state in NBs is associated with increased tumor antigenicity that enables more efficient elimination of tumor cells by cytotoxic lymphocytes and paves the way for combined application of differentiation-inducing agents and immunotherapy as an auxiliary approach in NB patients.
  •  
22.
  • Carlson, Lena-Maria, et al. (författare)
  • The microenvironment of human neuroblastoma supports the activation of tumor-associated T lymphocytes.
  • 2013
  • Ingår i: Oncoimmunology. - : Informa UK Limited. - 2162-4011 .- 2162-402X. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor infiltration by lymphocytes has been linked to improved clinical outcome in children with neuroblastoma (NB) but T-cell activation has never been demonstrated to occur within the NB microenvironment. Here we show that tumor-associated lymphocytes (TALs) obtained from lesions representing all genetic subsets of NB and autologous peripheral blood lymphocytes (PBLs) analyzed on the day of tumor excision differed in composition, phenotype and functional characteristics. The NB microenvironment appeared to promote the accumulation of CD3(+)CD8(+) T cells and contained a larger proportion of T cells expressing the interleukin-2 receptor α chain (CD25) and manifesting an effector memory (CCR7(-)CD45RA(-)) phenotype. Accordingly, the stimulation of PBLs with autologous tumor cells in short-term cultures increased the proportion of effector memory T cells, upregulated CD25, stimulated the expression of the TH1 cytokines interferon γ and tumor necrosis factor α, and reduced the expression of transforming growth factor β. In situ proliferation as well as a characteristic pattern of T-cell receptor aggregation at the contact sites with malignant cells was revealed by the immunohistochemical staining of TALs in primary tumors, indicating that the NB milieu is compatible with the activation of the immune system. Our results are compatible with the hypothesis that CD8(+) T cells are specifically activated within the NB microenvironment, which appears to be permissive for effector memory responses.
  •  
23.
  • Cetinkaya, Cihan, et al. (författare)
  • Age dependence of tumor genetics in unfavorable neuroblastoma : arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation
  • 2013
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 13, s. 231-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling. Methods: Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher's exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis. Results: MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q-tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001). Furthermore, in the 11q-tumor group a positive correlation was seen between the number of segmental aberrations and the age at diagnosis (Pearson Correlation 0.606; p=0.037). Among nonMNA/non11q-tumors (n=6), one tumor displayed amplicons on 11q and 12q and three others bore evidence of progression from low-risk tumors due to retrospective evidence of disease six years before diagnosis, or due to tumor profiles with high proportions of numerical chromosomal aberrations. An early age at diagnosis of MNA neuroblastomas was verified by registry data, with an average of 29.2 months for 43 cases that were not included in the present study. Conclusion: MNA and segmental 11q loss define two major genetic variants of unfavorable neuroblastoma with apparent differences in their pace of tumor evolution and in genomic integrity. Other possible, but less common, routes in the development of aggressive tumors are progression of low-risk infant-type lesions, and gene amplifications other than MYCN. Knowledge on such nosological diversity of aggressive neuroblastoma might influence future strategies for therapy.
  •  
24.
  • De Brouwer, Sara, et al. (författare)
  • Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification.
  • 2010
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432 .- 1557-3265. ; 16:17, s. 4353-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression.
  •  
25.
  • Djos, Anna, 1983, et al. (författare)
  • Aneuploidy in neuroblastoma tumors is not associated with inactivating point mutations in the STAG2 gene.
  • 2013
  • Ingår i: BMC medical genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal instability is a hallmark of human cancer caused by errors in mitotic control and chromosome segregation. STAG2 encodes a subunit of the cohesion complex that participates in mitotic chromatid separation and was recently found to show low expression and inactivating mutations in Ewing's sarcoma, melanoma and glioblastoma.In the childhood tumor neuroblastoma (NB) segmental chromosomal alterations are associated with poor prognosis whereas tumors displaying whole chromosome gains and losses have a much better prognosis.
  •  
26.
  • Djos, Anna, 1983, et al. (författare)
  • Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes
  • 2023
  • Ingår i: CANCERS. - 2072-6694. ; 15:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.
  •  
27.
  • Djos, Anna, 1983, et al. (författare)
  • The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma.
  • 2012
  • Ingår i: Molecular cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Hypermethylation of promotor CpG islands is a common mechanism that inactivates tumor suppressor genes in cancer. Genes belonging to the RASSF gene family have frequently been reported as epigenetically silenced by promotor methylation in human cancers. Two members of this gene family, RASSF1A and RASSF5A have been reported as methylated in neuroblastoma. Data from our previously performed genome-wide DNA methylation array analysis indicated that other members of the RASSF gene family are targeted by DNA methylation in neuroblastoma. RESULTS: In the current study, we found that several of the RASSF family genes (RASSF2, RASSF4, RASSF5, RASSF6, RASSF7, and RASSF10) to various degrees were methylated in neuroblastoma cell lines and primary tumors. In addition, several of the RASSF family genes showed low or absent mRNA expression in neuroblastoma cell lines. RASSF5 and RASSF6 were to various degrees methylated in a large portion of neuroblastoma tumors and RASSF7 was heavily methylated in most tumors. Further, CpG methylation sites in the CpG islands of some RASSF family members could be used to significantly discriminate between biological subgroups of neuroblastoma tumors. For example, RASSF5 methylation highly correlated to MYCN amplification and INRG stage M. Furthermore, high methylation of RASSF6 was correlated to unfavorable outcome, 1p deletion and MYCN amplification in our tumor material. In conclusion This study shows that several genes belonging to the RASSF gene family are methylated in neuroblastoma. The genes RASSF5, RASSF6 and RASSF7 stand out as the most promising candidate genes for further investigations in neuroblastoma.
  •  
28.
  • Eissler, Nina, et al. (författare)
  • Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade
  • 2016
  • Ingår i: Oncoimmunology. - : Taylor & Francis. - 2162-4011 .- 2162-402X. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Removal of immuno-suppression has been reported to enhance antitumor immunity primed by checkpoint inhibitors. Although PD-1 blockade failed to control tumor growth in a transgenic murine neuroblastoma model, concurrent inhibition of colony stimulating factor 1 receptor (CSF-1R) by BLZ945 reprogrammed suppressive myeloid cells and significantly enhanced therapeutic effects. Microarray analysis of tumor tissues identified a significant increase of T-cell infiltration guided by myeloid cell-derived chemokines CXCL9, 10, and 11. Blocking the responsible chemokine receptor CXCR3 hampered T-cell infiltration and reduced antitumor efficacy of the combination therapy. Multivariate analysis of 59 immune-cell parameters in tumors and spleens detected the correlation between PD-L1-expressing myeloid cells and tumor burden. In vitro, anti-PD-1 antibody Nivolumab in combination with BLZ945 increased the activation of primary human T and NK cells. Importantly, we revealed a previously uncharacterized pathway, in which T cells secreted M-CSF upon PD-1 blockade, leading to enhanced suppressive capacity of monocytes by upregulation of PD-L1 and purinergic enzymes. In multiple datasets of neuroblastoma patients, gene expression of CD73 correlated strongly with myeloid cell markers CD163 and CSF-1R in neuroblastoma tumors, and associated with worse survival in high-risk patients. Altogether, our data reveal the dual role of activated T cells on myeloid cell functions and provide a rationale for the combination therapy of anti-PD-1 antibody with CSF-1R inhibitor.
  •  
29.
  • Ejeskär, Katarina, 1969, et al. (författare)
  • Fine mapping of a tumour suppressor candidate gene region in 1p36.2-3, commonly deleted in neuroblastomas and germ cell tumours.
  • 2001
  • Ingår i: Medical and pediatric oncology. - 0098-1532 .- 1096-911X. ; 36:1, s. 61-6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A common genetic feature of neuroblastomas, which is also an important prognostic factor, is deletion of chromosome region 1p. The deletion of 1p often involves a deletion of varying size, with a consensus region within the most distal bands 1p36.2-3. The neuroblastoma SRO (shortest region of overlap of (deletions) presented earlier by our group was defined distally by the cluster of loci D1S80/ D1Z2/CDC2L1 and proximally by loci D1S244, i.e., approximately 25 cM. The 1p deletions are, however, not restricted to neuroblastoma tumours. In fact, a large spectrum of tumour types display deletions to varying degrees of 1p. PROCEDURE: We have exploited the possibility of using deletions of other tumour types, preferentially that of germ cell tumours, and combining the deletions with that of the neuroblastoma SRO. Also in germ cell tumours, distal 1p-deletions have been shown to have prognostic significance. RESULTS: We found in our germ cell tumours a SRO ranging from D1S508 to D1S200. Interestingly, this region only partially overlapped (approximately 5 cm) with our neuroblastoma SRO in region D1S508 to D1S244. We have thus focused on analysing this smaller region in the search for genes involved in the genesis of different cancers. We have performed radiation hybrid mapping of a large number of markers, STSs, ESTs, and others known to reside in 1p. We have also initiated the development of a BAC contig of the region. FISH, and fibre-FISH mapping of BACs were also performed. CONCLUSIONS: The data presented here constitute an ongoing work with the aim of identifying and cloning gene(s) important for development of germ cell tumours, neuroblastomas, and possibly other tumours.
  •  
30.
  • Fransson, Susanne, 1975, et al. (författare)
  • Aggressive neuroblastomas have high p110alpha but low p110delta and p55alpha/p50alpha protein levels compared to low stage neuroblastomas
  • 2013
  • Ingår i: Journal of Molecular Signaling. - : BioMed Central (BMC). - 1750-2187. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The phosphoinositide 3-kinase (PI3K)/Akt pathway is involved in neuroblastoma development where Akt/PKB activation is associated with poor prognosis. PI3K activity subsequently activates Akt/PKB, and as mutations of PI3K are rare in neuroblastoma and high levels of PI3K subunit p110delta is associated with favorable disease with low p-Akt/PKB, the levels of other PI3K subunits could be important for Akt activation.Methods: Protein levels of Type IA PI3K catalytic and regulatory subunits were investigated together with levels of phosphorylated Akt/PKB and the PI3K negative regulator PTEN in primary neuroblastoma tumors. Relation between clinical markers and protein levels were evaluated through t-tests. Results: We found high levels of p-Akt/PKB correlating to aggressive disease and p-Akt/PKB (T308) showed inverse correlation to PTEN levels. The regulatory isomers p55alpha/p50alpha showed higher levels in favorable neuroblastoma as compared with aggressive neuroblastoma. The PI3K-subunit p110alpha was found mainly in advanced tumors while p110delta showed higher levels in favorable neuroblastoma.Conclusions: Activation of the PI3K/Akt pathway is seen in neuroblastoma tumors, however the contribution of the different PI3K isoforms is unknown. Here we show that p110alpha is preferentially expressed in aggressive neuroblastomas, with high p-Akt/PKB and p110delta is mainly detected in favorable neuroblastomas, with low p-Akt/PKB. This is an important finding as PI3K-specific inhibitors are suggested for enrollment in treatment of neuroblastoma patients.
  •  
31.
  • Fransson, Susanne, 1975, et al. (författare)
  • Intragenic anaplastic lymphoma kinase (ALK) rearrangements: Translocations as a novel mechanism of ALK activation in neuroblastoma tumors.
  • 2015
  • Ingår i: Genes, chromosomes & cancer. - : Wiley. - 1098-2264 .- 1045-2257. ; 54:2, s. 99-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaplastic lymphoma kinase (ALK) has been demonstrated to be deregulated in sporadic as well as in familiar cases of neuroblastoma (NB). Whereas ALK-fusion proteins are common in lymphoma and lung cancer, there are few reports of ALK rearrangements in NB indicating that ALK mainly exerts its oncogenic capacity via activating mutations and/or overexpression in this tumor type. In this study, 332 NB tumors and 13 cell lines were screened by high resolution single nucleotide polymorphism microarray. Gain of 2p was detected in 23% (60/332) of primary tumors and 46% (6/13) of cell lines, while breakpoints at the ALK locus were detected in four primary tumors and two cell lines. These were further analyzed by next generation sequencing and a targeted enrichment approach. Samples with both ALK and MYCN amplification displayed complex genomic rearrangements with multiple breakpoints within the amplicon. None of the translocations characterized in primary NB tumors are likely to result in a chimeric protein. However, immunohistochemical analysis reveals high levels of phosphorylated ALK in these samples despite lack of initial exons, possibly due to alternative transcription initiation sites. Both ALK proteins predicted to arise from such alterations and from the abnormal ALK exon 4-11 deletion observed in the CLB-BAR cell line show strong activation of downstream targets STAT3 and extracellular signal-regulated kinase (ERK) when expressed in PC12 cells. Taken together, our data indicate a novel, although rare, mechanism of ALK activation with implications for NB tumorigenesis.
  •  
32.
  • Fransson, Susanne, et al. (författare)
  • Stage-dependent expression of PI3K/Akt‑pathway genes in neuroblastoma
  • 2013
  • Ingår i: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 42:2, s. 609-616
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphoinositide-3 kinase (PI3K) pathway plays a critical role in cancer cell growth and survival and has also been implicated in the development of the childhood cancer neuroblastoma. In neuroblastoma high mRNA expression of the PI3K catalytic isoform PIK3CD is associated to favorable disease. Yet, activation of Akt is associated with poor prognosis. Since the contribution of the numerous members of this pathway to neuroblastoma pathogenesis is mainly unknown, genes of the PI3K/Akt pathway were analyzed at the mRNA level through microarrays and quantitative real-time RT-PCR (TaqMan) and at the protein level using western blot analysis. Five genes showed lower mRNA expression in aggressive compared to more favorable neuroblastomas (PRKCZ, PRKCB1, EIF4EBP1, PIK3RI and PIK3CD) while the opposite was seen for PDGFRA. Clustering analysis shows that the expression levels of these six genes can predict aggressive disease. At the protein level, p110δ (encoded by PIK3CD) and p85α isomers (encoded by PIK3R1) were more highly expressed in favorable compared to aggressive neuroblastoma. Evaluation of the expression of these PI3K genes can predict aggressive disease, and indicates stage-dependent involvement of PI3K-pathway members in neuroblastoma.
  •  
33.
  • Georgantzi, Kleopatra, et al. (författare)
  • Chromogranin A and neuron-specific enolase in neuroblastoma : Correlation to stage and prognostic factors.
  • 2018
  • Ingår i: Pediatric Hematology & Oncology. - : Informa UK Limited. - 0888-0018 .- 1521-0669. ; 35:2, s. 156-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromogranin A (CgA) and neuron specific enolase (NSE) are important markers in adult neuroendocrine tumors (NET). Neuroblastoma (NB) has certain neuroendocrine properties. The aim of this study was to correlate blood concentrations of CgA, chromogranin B (CgB), and NSE to prognostic factors and outcome in children with NB. Blood samples from 92 patients with NB, 12 patients with benign ganglioneuroma (GN), 21 patients with non-NB solid tumors, 10 patients with acute leukemias, and 69 healthy children, were analyzed. CgA concentrations were higher in neonates vs. children older than one month in the control group (p < 0.0001), and in neonates with NB vs. the control group (p < 0.01). CgA and NSE concentrations were higher in patients with stages 3 and 4 disease (p < 0.05 and p < 0.05), in patients having tumors with amplification of MYCN (p < 0.05 and p < 0.001), or chromosome 1 p deletion (p < 0.05 and p < 0.05). NSE correlated to the tumor size at diagnosis (p < 0.001) and to tumor related death (p < 0.01) in NB. CgA and NSE concentrations were elevated in patients with NB and especially in those with advanced disease. Both CgA and NSE correlated to genetic markers, while only NSE correlated to primary tumor size and outcome in NB. We found that CgA and NSE are clinically valuable tumor markers in NB and they merit prospective clinical evaluations as such.
  •  
34.
  • Gleissman, Helena, et al. (författare)
  • Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo
  • 2011
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 128:7, s. 1703-1711
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological and preclinical studies have revealed that omega-3 fatty acids have anticancer properties. We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) induces apoptosis of neuroblastoma cells in vitro by mechanisms involving intracellular peroxidation of DHA by means of 15-lipoxygenase or autoxidation. In our study, the effects of DHA supplementation on neuroblastoma tumor growth in vivo were investigated using two complementary approaches. For the purpose of prevention, DHA as a dietary supplement was fed to athymic rats before the rats were xenografted with human neuroblastoma cells. For therapeutic purposes, athymic rats with established neuroblastoma xenografts were given DHA daily by gavage and tumor growth was monitored. DHA levels in plasma and tumor tissue were analyzed by gas liquid chromatography. DHA delayed neuroblastoma xenograft development and inhibited the growth of established neuroblastoma xenografts in athymic rats. A revised version of the Pediatric Preclinical Testing Program evaluation scheme used as a measurement of treatment response showed that untreated control animals developed progressive disease, whereas treatment with DHA resulted in stable disease or partial response, depending on the DHA concentration. In conclusion, prophylactic treatment with DHA delayed neuroblastoma development, suggesting that DHA could be a potential agent in the treatment of minimal residual disease and should be considered for prevention in selected cases. Treatment results on established aggressive neuroblastoma tumors suggest further studies aiming at a clinical application in children with high-risk neuroblastoma.
  •  
35.
  • Guan, Jikui, et al. (författare)
  • Clinical response of the novel activating ALK-I1171T mutation in neuroblastoma to the ALK inhibitor ceritinib.
  • 2018
  • Ingår i: Cold Spring Harbor molecular case studies. - : Cold Spring Harbor Laboratory. - 2373-2873. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumors with Anaplastic Lymphoma Kinase (ALK) fusion rearrangements, including non-small cell lung cancer and anaplastic large cell lymphoma, are highly sensitive to ALK tyrosine kinase inhibitors (TKIs), underscoring the notion that such cancers are addicted to ALK activity. While mutations in ALK are heavily implicated in childhood neuroblastoma, response to the ALK TKI crizotinib has been disappointing. Embryonal tumors in patients with DNA repair defects such as Fanconi anemia (FA) often have a poor prognosis, due to lack of therapeutic options. Here we report a child with underlying FA and ALK mutant high-risk neuroblastoma responding strongly to precision therapy with the ALK TKI ceritinib. Conventional chemotherapy treatment caused severe, life-threatening toxicity. Genomic analysis of the initial biopsy identified germ-line FANCA mutations as well as a novel ALK-I1171T variant. ALK-I1171T generates a potent gain-of-function mutant, as measured in PC12 cell neurite outgrowth and NIH3T3 transformation. Pharmacological inhibition profiling of ALK-I1171T in response to various ALK TKIs identified an 11-fold improved inhibition of ALK-I1171T with ceritinib when compared with crizotinib. Immunoaffinity-coupled LC-MS/MS phosphoproteomics analysis indicated a decrease in ALK signaling in response to ceritinib. Ceritinib was therefore selected for treatment in this child. Mono-therapy with ceritinib was well tolerated and resulted in normalized catecholamine markers and tumor shrinkage. After 7.5 months treatment, residual primary tumor was surgically removed and exhibited hallmarks of differentiation together with reduced Ki67 levels. Clinical follow-up after 21 months treatment revealed complete clinical remission including all metastatic sites. Therefore, ceritinib presents a viable therapeutic option for ALK-positive neuroblastoma.
  •  
36.
  • Haug, Bjørn Helge, et al. (författare)
  • MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma.
  • 2011
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 1460-2180 .- 0143-3334. ; 32:7, s. 1005-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYCN oncogene is frequently amplified in neuroblastoma. It is one of the most consistent markers of bad prognosis for this disease. Dickkopf-3 (DKK3) is a secreted protein of the DKK family of Wnt regulators. It functions as a tumor suppressor in a range of cancers, including neuroblastoma. MYCN was recently found to downregulate DKK3 mRNA. In this study, we show that MYCN knockdown in MYCN-amplified (MNA) neuroblastoma cell lines increases secretion of endogenous DKK3 to the culture media. MicroRNAs (miRNAs) are ∼20 nt long single-stranded RNA molecules that downregulate messenger RNAs by targeting the 3' untranslated region (3'UTR). Many miRNAs regulate genes involved in the pathogenesis of cancer and are extensively deregulated in different tumors. Using miRNA target prediction software, we found several MYCN-regulated miRNAs that could target the 3'UTR sequence of DKK3, including mir-92a, mir-92b and let-7e. Luciferase expression from a reporter vector containing the DKK3-3'UTR was decreased when this construct was cotransfected with mir-92a, mir-92b or let-7e in HEK293 cells. Mutation of the mir-92 seed sequence in the 3'UTR completely rescued the observed decrease in reporter expression when cotransfected with mir-92a and mir-92b. Antagomir and miRNA-mimic transfections in neuroblastoma cell lines confirmed that DKK3 secretion to the culture media is regulated by mir-92. Consistent with reports from other cancers, we found DKK3 to be expressed in the endothelium of primary neuroblastoma samples and to be absent in tumors with MYCN amplification. Our data demonstrate that MYCN-regulated miRNAs are able to modulate the expression of the tumor suppressor DKK3 in neuroblastoma.
  •  
37.
  •  
38.
  • Herold, Nikolas, et al. (författare)
  • Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies
  • 2017
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 23:2, s. 256-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults'. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP)(2-5), which causes DNA damage through perturbation of DNA synthesis(6). Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment(7-9). Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR-Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.
  •  
39.
  • Hoven, Emma, et al. (författare)
  • The Influence of Pediatric Cancer Diagnosis and Illness Complication Factors on Parental Distress
  • 2008
  • Ingår i: Journal of pediatric hematology/oncology (Print). - 1077-4114 .- 1536-3678. ; 30:11, s. 807-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We investigated how primary diagnosis and risk for diagnosis-related complication factors influence parental distress after a childs cancer diagnosisMethods: We used a model in which "complicated childhood cancers" were grouped into 1 category after identifying a set of potentially influential illness complication variables. This category included central nervous system tumors, acute myeloid leukemia, and bone tumors. Parental distress in that category (n = 144) was compared with distress after acute lymphoblastic leukemia (n = 177) in the child. In addition, comparisons were made between parents of the specific diagnosis groups. A multidimensional questionnaire assessing symptoms of distress was used.Results: Parents in the complicated cancer category showed significantly heightened disease-related fear, anxiety, depression, loss of control, late effects-related uncertainty, and poorer self-esteem compared with parents of children with acute lymphoblastic leukemia. Significantly heightened parental distress was associated with the child having been treated with cranial irradiation.Conclusions: Relatively heightened distress in parents of children with complicated cancer is influenced by diagnosis-related factors like an intricate prediagnostic phase, and uncertainty about late effects. Heightened vulnerability to distress signals exceptional needs for support and information among parents of children treated for central nervous system or bone tumors.
  •  
40.
  •  
41.
  • Jamil, Seema, et al. (författare)
  • Tropism of the in situ growth from biopsies of childhood neuroectodermal tumors following transplantation into experimental teratoma
  • 2014
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 134:7, s. 1630-1637
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental teratoma induced from human pluripotent stem cells with normal karyotype can be described as a failed embryonic process and includes besides advanced organoid development also large elements of tissue with a prolonged occurrence of immature neural components. Such immature components, although benign, exhibit strong morphological resemblance with tumors of embryonic neuroectodermal origin. Here, we demonstrate that biopsy material from childhood tumors of neural embryonic origin transplanted to mature experimental teratoma can show an exclusive preference for matching tissue. Tumor specimens from five children with; Supratentorial primitive neuroectodermal tumor (sPNET); Pilocytic astrocytoma of the brainstem; Classic medulloblastoma; peripheral primitive neuroectodermal tumor (pPNET) or neuroblastoma (NB), respectively, were transplanted. Analysis of up to 120 sections of each tumor revealed an engraftment for three of the transplanted tumors: pPNET, sPNET, and NB, with a protruding growth from the latter two that were selected for detailed examination. The histology revealed a strict tropism with a non-random integration into what morphologically appeared as matched embryonic microenvironment recuperating the patient tumor histology. The findings suggest specific advantages over xenotransplantation and lead us to propose that transplantation to the human embryonic microenvironment in experimental teratoma can be a well-needed complement for preclinical in vivo studies of childhood neuroectodermal tumors. What's new? The ability to better replicate the human neoplastic niche in vivo could help improve the predictive reliability of animal models. To that end, this study shows that biopsies from childhood neuroectodermal tumors are able to engraft into specific embryonic components of human experimental teratoma. Histological examination revealed a strict tropism of a neuroblastoma as well as a supratentorial primitive neuroectodermal tumor, showing nonrandom integration into morphologically identifiable tissues. The study opens new possibilities for the analysis of growth-promoting environmental factors and for investigating novel therapies targeted to the microenvironment of childhood neuroectodermal tumors.
  •  
42.
  • Keane, Simon, et al. (författare)
  • The loss of DLG2 isoform 7/8, but not isoform 2, is critical in advanced staged neuroblastoma
  • 2021
  • Ingår i: Cancer Cell International. - : Springer Nature. - 1475-2867. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neuroblastoma is a childhood neural crest tumor showing large clinical and genetic heterogeneity, one form displaying 11q-deletion is very aggressive. It has been shown that 11q-deletion results in decreased expression of DLG2, a gene residing in the deleted region. DLG2 has a number of different isoforms with the main difference is the presence or absence of a L27 domain. The L27 domain containing DLG proteins can form complexes with CASK/MPP and LIN7 protein family members, which will control cell polarity and signaling. Methods: We evaluated the DLG gene family and the LIN7 gene family for their expression in differently INSS staged neuroblastoma from publically available data and primary tumors, we included two distinct DLG1 and DLG2 N-terminal transcript isoforms encoding L27 domains for their expression. Functionality of DLG2 isoforms and of LIN7A were evaluated in the 11q-deleted neuroblastoma cell line SKNAS. Results: In neuroblastoma only two DLG2 isoforms were expressed: isoform 2 and isoform 7/8. Using the array data we could determine that higher expression of DLG members that contain L27 domains correlated to better survival and prognosis. Whilst DLG1 showed a decrease in both isoforms with increased INSS stage, only the full length L27 containing DLG2 transcripts DLG2-isoform 7/8 showed a decrease in expression in high stage neuroblastoma. We could show that the protein encoded by DLG2-isoform 7 could bind to LIN7A, and increased DLG2-isoform 7 gene expression increased the expression of LIN7A, this reduced neuroblastoma cell proliferation and viability, with increased BAX/BCL2 ratio indicating increased apoptosis. Conclusion: We have provided evidence that gene expression of the L27 domain containing DLG2-isoform 7/8 but not L27 domain lacking DLG2-isoform 2 is disrupted in neuroblastoma, in particular in the aggressive subsets of tumors. The presence of the complete L27 domain allows for the binding to LIN7A, which will control cell polarity and signaling, thus affecting cancer cell viability. 
  •  
43.
  • Krona, Cecilia, 1976, et al. (författare)
  • Analysis of neuroblastoma tumour progression; loss of PHOX2B on 4p13 and 17q gain are early events in neuroblastoma tumorigenesis
  • 2008
  • Ingår i: International Journal of Oncology. - 1019-6439. ; 32:3, s. 575-583
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastomas are biologically and clinically heterogeneous tumours that most often occur sporadically in children at median age 2. The PHOX2B gene is implicated in the development of the autonomic nervous system and has been found to be infrequently mutated in sporadic neuroblastoma tumours and in some patients with hereditary neuroblastoma. We have screened a selected series of 36 paediatric tumours with presumed genetic predisposition, 34 of them neuroblastomas, for mutations in PHOX2B. A constitutional heterozygous missense mutation was found in a boy who developed bilateral adrenal tumours and stage 4 disease during infancy. The second allele of the PHOX2B locus was lost in the tumour DNA. Histopathological evaluation of the tumours suggested growth of two primary tumours, one with diploid DNA content and the other with tetraploid DNA content, i.e. a case of neuroblastoma stage 4M (multifocal tumour). However, array CGH (comparative genomic hybridization) data performed on both tumour masses from the patient instead supported a model where a common malignant precursor gave rise to the diploid tumour and subsequently the tetraploid tumour have progressed from the common precursor or by metastasis from the diploid tumour with additional genetic changes. The whole genome dosage analysis showed that the remaining alleles of PHOX2B had been lost in both tumours together with a specific 17q gain pattern. The tetraploid tumour had these features together with additional whole chromosomal loss of chromosomes 3, 9, 14, and 15. Based on the data presented here we suggest that loss of PHOX2B and 17q gain are early events in neuroblastoma tumourigenesis. We also propose investigators to re-analyze the rare cases of multifocal neuroblastomas with the array CGH technique for better understanding of the origin of these tumours.
  •  
44.
  • Krona, Cecilia, 1976, et al. (författare)
  • Screening for gene mutations in a 500 kb neuroblastoma tumor suppressor candidate region in chromosome 1p; mutation and stage-specific expression in UBE4B/UFD2.
  • 2003
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 22:15, s. 2343-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of a part of the short arm of chromosome 1 is one of the most common chromosomal rearrangements observed in neuroblastoma (NBL) tumors and it is associated with a poor prognosis. No NBL tumor suppressor gene has yet been identified in the region. Our shortest region of overlap of deletions, ranging from marker D1S80 to D1S244, was shown to partly overlap a 500 kb region that was homozygously deleted in a NBL cell line. We have screened seven genes known to reside in or very close to this overlap consensus region, UBE4B/UFD2, KIF1B, DFFA, PGD, CORT, PEX14, and ICAT, for coding mutations in NBL tumor DNA. A few deviations from the reference sequences were identified; most interestingly being a splice site mutation that was detected in UBE4B/UFD2 in a stage 3 NBL with a fatal outcome. This mutation was neither present in the patients constitutional DNA nor in any of 192 control chromosomes analysed. Also, the expression of UBE4B/UFD2 was markedly diminished in the high-stage/poor-outcome tumors as compared to the low-stage/favorable-outcome tumors. Overall, the number of amino-acid changes in the genes of the region was low, which shows that mutations in these genes are rare events in NBL development. Given the data presented here, UBE4B/UFD2 stands out as the strongest candidate NBL tumor suppressor gene in the region at this stage.
  •  
45.
  •  
46.
  • Kryh, Hanna, 1983, et al. (författare)
  • Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors.
  • 2011
  • Ingår i: BMC genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Copy neutral loss of heterozygosity (CN-LOH) refers to a special case of LOH occurring without any resulting loss in copy number. These alterations is sometimes seen in tumors as a way to inactivate a tumor suppressor gene and have been found to be important in several types of cancer. RESULTS: We have used high density single nucleotide polymorphism arrays in order to investigate the frequency and distribution of CN-LOH and other allelic imbalances in neuroblastoma (NB) tumors and cell lines. Our results show that the frequency of these near-CN-LOH events is significantly higher in the cell lines compared to the primary tumors and that the types of CN-LOH differ between the groups. We also show that the low-risk neuroblastomas that are generally considered to have a "triploid karyotype" often present with a complex numerical karyotype (no segmental changes) with 2-5 copies of each chromosome. Furthermore a comparison has been made between the three related cell lines SK-N-SH, SH-EP and SH-SY5Y with respect to overall genetic aberrations, and several aberrations unique to each of the cell lines has been found. CONCLUSIONS: We have shown that the NB tumors analyzed contain several interesting allelic imbalances that would either go unnoticed or be misinterpreted using other genome-wide techniques. These findings indicate that the genetics underlying NB might be even more complex than previously known and that SNP arrays are important analysis tools. We have also showed that these near-CN-LOH events are more frequently seen in NB cell lines compared to NB tumors and that a set of highly related cell lines have continued to evolve secondary to the subcloning event. Taken together our analysis highlights that cell lines in many cases differ substantially from the primary tumors they are thought to represent, and that caution should be taken when drawing conclusions from cell line-based studies.
  •  
47.
  • Kryh, Hanna, 1983, et al. (författare)
  • MYCN amplicon junctions as tumor-specific targets for minimal residual disease detection in neuroblastoma
  • 2011
  • Ingår i: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 39:5, s. 1063-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYCN gene is frequently amplified in unfavorable neuroblastoma tumors. Therefore, this study aimed at characterizing the novel junctions connecting the amplified DNA segments (amplicons) and obtaining tumor-specific PCR fragments for use in detecting minimal residual disease (MRD). High-density SNP arrays were used to map the end-points of the MYCN amplicons in a subset of neuroblastoma tumors. Primers were designed to give rise to a tumor-specific PCR product and were examined for MRD in the blood and bone marrow using quantitative PCR. Tumor-specific junction fragments were detected in all cases, confirming a head-to-tail tandem orientation of the amplicons and revealing microhomology at the amplicon junctions, thus suggesting a rolling circle caused by microhomology-mediated break-induced replication (MMBIR) as a possible mechanism initiating the MYCN amplification. We also evaluated the use of these junctions as tumor-specific targets for detecting MRD and observed that tumor DNA could be readily detected and quantified in either blood or bone marrow at a sensitivity of 1/10(6) tumor/control DNA. This study provides new information on the mechanisms of oncogene amplification and envisages means of rapidly obtaining highly sensitive PCR-based tools for tumor/patient-specific monitoring of treatment response and the early detection of relapse in patients with neuroblastoma.
  •  
48.
  • Kågedal, Bertil, 1943-, et al. (författare)
  • Pterin-dependent tyrosine hydroxylase mRNA is not expressed in human melanocytes or melanoma cells
  • 2004
  • Ingår i: Pigment Cell Research. - : Wiley. - 0893-5785 .- 1600-0749. ; 17:4, s. 346-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Pterin-dependent tyrosine hydroxylase has been described to occur occasionally in melanocytes. It is therefore important to quantify the mRNA of this enzyme in pigment cells to understand whether this enzyme can take an active part in pigment formation. A real-time reverse transcription-polymerase chain reaction method was used to quantify tyrosine hydroxylase mRNA in melanocytes and melanoma cells. The calibrator was obtained by amplification of a segment of cDNA from tyrosine hydroxylase mRNA, which included the target thus allowing enumeration of the number of transcripts per cell. In melanocytes (n = 3), tyrosine hydroxylase mRNA ranged from non-detectable to 0.000492 transcripts/cell and in melanoma cells from non-detectable to 0.005340 transcripts/cell. In neuroblastoma cells, the median tyrosine hydroxylase mRNA number was 0.4 transcripts/cell (range 0.02-25 transcripts/cell). The amount of tyrosine hydroxylase mRNA in the pigment cells was far less than the mRNA concentrations of four melanocyte-specific proteins measured in the same melanocytes and melanoma cells. We conclude that on the average less than 1 of 1000 melanocytes and melanoma cells contains at least one tyrosine hydroxylase mRNA molecule. Consequently, in 999 of 1000 cells translation into the corresponding enzyme protein cannot occur because of the lack of an mRNA template. Thus, in these cells there is no pterin-dependent tyrosine hydroxylase that can contribute to pigment formation by producing priming amounts of L-dopa for proper function of tyrosinase.
  •  
49.
  •  
50.
  • Martinsson, Tommy, 1956, et al. (författare)
  • Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy.
  • 2011
  • Ingår i: Cancer research. - : American Association for Cancer Research. - 1538-7445 .- 0008-5472. ; 71:1, s. 98-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the kinase domain of the ALK kinase have emerged recently as important players in the genetics of the childhood tumor neuroblastoma. Here, we report the appearance of a novel ALK mutation in neuroblastoma, correlating with aggressive tumor behavior. Analyses of genomic DNA from biopsy samples initially showed ALK sequence to be wild type. However, during disease progression, mutation of amino acid F1174 to a serine within the ALK kinase domain was observed, which correlated with aggressive neuroblastoma progression in the patient. We show that mutation of F1174 to serine generates a potent gain-of-function mutant, as observed in 2 independent systems. First, PC12 cell lines expressing ALK(F1174S) display ligand-independent activation of ALK and further downstream signaling activation. Second, analysis of ALK(F1174S) in Drosophila models confirms that the mutation mediates a strong, rough eye phenotype upon expression in the developing eye. Thus, we report a novel ALK(F1174S) mutation that displays ligand-independent activity in vivo, correlating with rapid and treatment-resistant tumor growth. The study also shows that initial screening in the first tumor biopsy of a patient may not be sufficient and that further molecular analysis, in particular in tumor progression and/or tumor relapse, is warranted for better understanding of the treatment of neuroblastoma patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 78
Typ av publikation
tidskriftsartikel (74)
annan publikation (2)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (73)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Kogner, Per (77)
Martinsson, Tommy, 1 ... (37)
Johnsen, John Inge (15)
Carén, Helena, 1979 (12)
Abel, Frida, 1974 (11)
Sjöberg, Rose-Marie, ... (11)
visa fler...
Fransson, Susanne, 1 ... (11)
Nilsson, Staffan, 19 ... (8)
Abrahamsson, Jonas, ... (8)
Martinsson, Tommy (8)
Baryawno, Ninib (8)
Sveinbjörnsson, Bald ... (7)
Wickström, Malin (6)
Sandgren, Johanna (6)
Gisselsson, David (6)
Djos, Anna, 1983 (6)
Fransson, Susanne (6)
Hedborg, Fredrik (6)
Wessman, Sandra (6)
Ejeskär, Katarina, 1 ... (5)
Lindskog, Magnus (5)
Mondal, Tanmoy, 1981 (5)
Fischer, Matthias (5)
Tesi, Bianca (5)
Segerström, Lova (5)
Ponthan, Frida (5)
Herold, Nikolas (4)
Nethander, Maria, 19 ... (4)
Mertens, Fredrik (4)
Rosenquist, Richard (4)
Taylan, Fulya (4)
Kanduri, Chandrasekh ... (4)
Wirta, Valtteri (4)
Dyberg, Cecilia (4)
Ruuth, Kristina (4)
Pronk, Cornelis Jan (4)
Noren-Nyström, Ulrik ... (4)
Hallberg, Bengt, 195 ... (4)
Arvidsson, Linda (4)
Øra, Ingrid (4)
Díaz de Ståhl, Teres ... (4)
Kryh, Hanna, 1983 (4)
Trager, Catarina (4)
Samuelsson, Sofie (4)
Stenman, Jakob (4)
Javanmardi, Niloufar (4)
Grillner, Pernilla (4)
Treis, Diana (4)
Hellberg, Maria (4)
Poluha, Anna (4)
visa färre...
Lärosäte
Karolinska Institutet (69)
Göteborgs universitet (43)
Uppsala universitet (27)
Lunds universitet (15)
Chalmers tekniska högskola (15)
Linköpings universitet (12)
visa fler...
Umeå universitet (7)
Högskolan i Skövde (3)
Kungliga Tekniska Högskolan (2)
Luleå tekniska universitet (1)
Jönköping University (1)
visa färre...
Språk
Engelska (78)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (52)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy