SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kohler Erika) "

Sökning: WFRF:(Kohler Erika)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
2.
  • Kohler, Annegret, et al. (författare)
  • Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 176-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.
  •  
3.
  • Martin, Francis, et al. (författare)
  • The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 452:7183, s. 7-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycorrhizal symbioses -- the union of roots and soil fungi -- are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate, and montane forests all depend upon ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of 2 ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here, we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-million-base genome assembly contains ~ 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features most notably a battery of effector-type small secreted proteins (SSP) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific proteins likely play a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell walls, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus which enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem in order to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
  •  
4.
  • Widemann, Thomas, et al. (författare)
  • Venus Evolution Through Time : Key Science Questions, Selected Mission Concepts and Future Investigations
  • 2023
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus' atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL's VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC's DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet's long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy