SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kong Wei Jia) "

Sökning: WFRF:(Kong Wei Jia)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Liang, Lijun, et al. (författare)
  • Theoretical Evaluation on Potential Cytotoxicity of Graphene Quantum Dots
  • 2016
  • Ingår i: ACS Biomaterials Science & Engineering. - : AMER CHEMICAL SOC. - 2373-9878. ; 2:11, s. 1983-1991
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to unique morphology, ultrasmall lateral sizes, and exceptional properties, graphene quantum dots (GQDs) hold great potential in many applications, especially in the field of electrochemical biosensors, bioimaging, drug delivery, et cetera. Its biosafety and potential cytotoxicity to human and animal cells has been a growing concern in recent years. In this work, the potential cytotoxicity of GQDs was evaluated by molecular dynamics simulations. Our simulation demonstrates that small size GQDs could easily permeate into the lipid membrane in a vertical way. It is relatively difficult to permeate into the lipid membrane for GQDs that are larger than GQD61 on the nanosecond time-scale. The thickness of the POPC membrane could even be affected by the small size of GQDs. Free energy calculations revealed that the free energy barrier of GQD permeation through the lipid membrane could greatly change with the change of GQD size. Under high GQD concentration, the GQD molecules could rapidly aggregate in water but disaggregate after entering into the membrane interior. Moreover, high concentrations of GQDs could induce changes in the structure properties and diffusion properties of the lipid bilayer, and it may affect the cell signal transduction. However, GQDs with relatively small size are not large enough to mechanically damage the lipid membrane. Our results suggest that the cytotoxicity of GQDs with small size is low and may be appropriate for biomedical application.
  •  
9.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
10.
  • Xu, Zhaowei, et al. (författare)
  • Acetylation of Checkpoint suppressor 1 enhances its stability and promotes the progression of triple-negative breast cancer
  • 2022
  • Ingår i: Cell Death Discovery. - : Springer Nature. - 2058-7716. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Checkpoint suppressor 1 (CHES1), a transcriptional regulator, had been dysregulated in many types of malignancies including breast cancer, and its expression level is strongly associated with progression and prognosis of patients. However, the underlying regulatory mechanisms of CHES1 expression in the breast cancer and the effects of post-translational modifications (PTMs) on its functional performance remain to be fully investigated. Herein, we found that CHES1 had a high abundance in triple-negative breast cancer (TNBC) and its expression was tightly associated with malignant phenotype and poor outcomes of patients. Furthermore, we confirmed that CHES1 was an acetylated protein and its dynamic modification was mediated by p300 and HDAC1, and CHES1 acetylation enhanced its stability via decreasing its ubiquitination and degradation, which resulted in the high abundance of CHES1 in TNBC. RNA-seq and functional study revealed that CHES1 facilitated the activation of oncogenic genes and pathways leading to proliferation and metastasis of TNBC. Taken together, this research established a novel regulatory role of acetylation on the stability and activity of CHES1. The results demonstrate the significance of CHES1 acetylation and underlying mechanisms in the progression of TNBC, offering new potential candidate for molecular-targeted therapy in breast cancer.
  •  
11.
  • Yan, Xue-Mei, et al. (författare)
  • Unraveling the evolutionary dynamics of the TPS gene family in land plants
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Terpenes and terpenoids are key natural compounds for plant defense, development, and composition of plant oil. The synthesis and accumulation of a myriad of volatile terpenoid compounds in these plants may dramatically alter the quality and flavor of the oils, which provide great commercial utilization value for oil-producing plants. Terpene synthases (TPSs) are important enzymes responsible for terpenic diversity. Investigating the differentiation of the TPS gene family could provide valuable theoretical support for the genetic improvement of oil-producing plants. While the origin and function of TPS genes have been extensively studied, the exact origin of the initial gene fusion event - it occurred in plants or microbes - remains uncertain. Furthermore, a comprehensive exploration of the TPS gene differentiation is still pending. Here, phylogenetic analysis revealed that the fusion of the TPS gene likely occurred in the ancestor of land plants, following the acquisition of individual C- and N- terminal domains. Potential mutual transfer of TPS genes was observed among microbes and plants. Gene synteny analysis disclosed a differential divergence pattern between TPS-c and TPS-e/f subfamilies involved in primary metabolism and those (TPS-a/b/d/g/h subfamilies) crucial for secondary metabolites. Biosynthetic gene clusters (BGCs) analysis suggested a correlation between lineage divergence and potential natural selection in structuring terpene diversities. This study provides fresh perspectives on the origin and evolution of the TPS gene family.
  •  
12.
  • Zhou, Xian-Jing, et al. (författare)
  • Thermo-sensitive Microgels Supported Gold Nanoparticles as Temperature-mediated Catalyst
  • 2019
  • Ingår i: Chinese Journal of Polymer Science. - : Springer Science and Business Media LLC. - 0256-7679 .- 1439-6203. ; 37:3, s. 235-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Microgels with a thermo-sensitive poly(N-isopropylacrylamide) (polyNIPAm) backbone and bis-imidazolium (VIM) ionic cross-links, denoted as poly(NIPAm-co-VIM), were successfully prepared. The as-synthesized ionic microgels were converted to nanoreactors, denoted as Au@PNI MGs, upon generation and immobilization of gold nanoparticles (Au NPs) of 5-8 nm in size into poly(NIPAm-co-VIM). The content of Au NPs in microgels could be regulated by controlling the 1,6-dibromohexane/vinylimidazole molar ratio in the quaternization reaction. The microgel-based nanoreactors were morphologically spherical and uniform in size, and presented reversible thermo-sensitive behavior with volume phase transition temperatures (VPTTs) at 39-40 degrees C. The Au@PNI MGs were used for the reduction of 4-nitrophenol, of which the catalytic activity could be modulated by temperature.
  •  
13.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy