SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Konovalenko Alexander) "

Sökning: WFRF:(Konovalenko Alexander)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balkashin, O. P., et al. (författare)
  • Nonstationary magnetization dynamics of point contacts with a single ferromagnetic film
  • 2009
  • Ingår i: Low temperature physics (Woodbury, N.Y., Print). - : AIP Publishing. - 1063-777X .- 1090-6517. ; 35:8-9, s. 693-701
  • Tidskriftsartikel (refereegranskat)abstract
    • The electric conductivity of point nanocontacts between 5, 10, and 100 nm thick ferromagnetic (F) cobalt films and a nonmagnetic (N) metal (copper or silver) needle is investigated. Two fundamentally different mechanisms for the formation of the response, signal to microwave irradiation have been observed for the first time. One mechanism is due to the effect of the rectification of high frequency ac current on the nonlinearity of the current-voltage characteristics due to the precession of the magnetization under the action of a constant transport current flowing through the contact. The second one is associated with the resonance excitation of the precession of the magnetization vector at the fundamental frequency and its harmonic by an external high-frequency field. The experimental results support a previous contention that a "surface spin valve" whose static and dynamic properties are similar to conventional F-1-N-F-2 spin valve [Nano Letters 7, 927 (2007)] is formed in the experimental F-N nanocontacts.
  •  
2.
  • Balkashin, O. P., et al. (författare)
  • Spin dynamics in point contacts to single ferromagnetic films
  • 2009
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 79:9, s. 092419-1-092419-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Excitation of magnons or spin waves driven by nominally unpolarized transport currents in point contacts of normal and ferromagnetic metals is probed by irradiating the contacts with microwaves. Two characteristic dynamic effects are observed: a suppression of spin-wave nonlinearities in the point contact conductance by off-resonance microwave irradiation and a resonant stimulation of spin-wave peaks in the differential resistance of the nanocontacts by the microwave field. These observations provide direct evidence that the magnetoresistance peaks observed are due to gigahertz spin dynamics at the ferromagnetic interface driven by the spin transfer torque effect of the transport current.
  •  
3.
  • Bandaru, S V Ravikumar, et al. (författare)
  • Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels
  • 2020
  • Ingår i: International Journal of Heat and Mass Transfer. - : Elsevier BV. - 0017-9310 .- 1879-2189. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Cooling by water spray is a well-known technology that can reach significantly higher Critical Heat Flux (CHF) compared to other cooling methods. For the light water reactor safety, the in-vessel retention (IVR) by external reactor vessel cooling (ERVC) is a comprehensive severe accident management strategy to arrest and confine the corium in the lower head of the reactor pressure vessel. Heat fluxes up to 1.5 MW/m2 have already been assumed attainable in low-power nuclear reactors while cooling required in high-power reactors is expected to reach 2.5 MW/m2. Instead of reactor lower head flooding and relying on cooling due to natural convection, a viable and more efficient alternative is to spray the external surface of the vessel. Given all the advantages of spray cooling reported in the literature, a lab-scale experimental facility was built to validate the efficiency of multi-nozzle spray cooling of a downward-facing heated surface inclined at different angles up to 90o. The facility employed a 2×3 matrix of spray nozzles to cool the FeCrAl alloy foil with an effectively heated surface area of 96 cm2 using water as the coolant. Heat loads and surface inclinations were varied parameters in the test matrix. The results show that no significant variations in spray cooling performance concerning the inclination of the heated surface. A surface heat flux of 2.5 MW/m2 was achieved at every inclination of the downward-facing surface. The results also indicate that more uniform liquid film distribution could be obtained for some inclinations, which in turn leads to maintaining low surface temperature. The obtained surface heat flux margin by spray cooling indicates that it is feasible to adopt IVR-ERVC strategy for a large power reactor.
  •  
4.
  • Basso, Simone, et al. (författare)
  • Development of scalable empirical closures for self-leveling of particulate debris bed
  • 2014
  • Ingår i: Proceedings of ICAPP 201,  Paper 14330. - : American Nuclear Society. - 9780894484605 ; , s. 14330-
  • Konferensbidrag (refereegranskat)abstract
    • Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel is employed as a severe accident mitigation strategy in several designs of light water reactors. Geometrical configuration of the debris bed is one of the factors which define if the decay heat can be removed from the debris bed by natural circulation. A bed can be coolable if spread uniformly, while the same debris forming a tall mound-shape debris bed can be non-coolable. Two-phase flow inside the bed serves as a source of mechanical energy which can move debris, thus flatten and gradually reduce the height of the debris bed. There is a competition between the time scales for (i) reaching a coolable configuration of the bed by such “self-leveling” phenomenon, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local (i) gas velocity, and (ii) slope angle of the bed. The goal of this work is to obtain a dependency of particle motion rate on local slope angle and gas velocity expressed in non-dimensional variables, universal for particles of different shapes, sizes and materials. Such scaling approach is proposed in this work and validated against experimental data.
  •  
5.
  • Basso, Simone, et al. (författare)
  • Effectiveness of the debris bed self-leveling under severe accident conditions
  • 2016
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 95, s. 75-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Melt fragmentation, quenching and long term coolability in a deep pool of water under the reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. The success of such strategy is contingent upon the natural circulation effectiveness in removing the decay heat generated in the porous debris bed. The maximum height of the bed is one of the important factors which affect the debris coolability. The two-phase flow within the bed generates mechanical energy which can change the geometry of the debris bed by the "self-leveling" phenomenon. In this work.we developed an approach to modeling of the self-leveling phenomenon. Sensitivity analysis was carried out to rank the importance of the model uncertainties and uncertain input parameters i.e. the conditions of the accident scenario and the debris bed properties. The results provided some useful insights for further improvement of the model and reduction of the output uncertainties through separate-effect experimental studies. Finally, we assessed the self-leveling effectiveness, quantified its uncertainties in prototypic severe accident conditions and demonstrated that the effect of self-leveling phenomenon is robust with respect to the considered input uncertainties.
  •  
6.
  • Basso, Simone, et al. (författare)
  • Empirical closures for particulate debris bed spreading induced by gas-liquid flow
  • 2016
  • Ingår i: Nuclear Engineering and Design. - : Elsevier. - 0029-5493 .- 1872-759X. ; 297, s. 19-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient removal of decay heat from the nuclear reactor core debris is paramount for termination of severe accident progression. One of the strategies is based on melt fragmentation, quenching and cooling in a deep pool of water under the reactor vessel. Geometrical configuration of the debris bed is among the important factors which determine possibility of removing the decay heat from the debris bed by natural circulation of the coolant. For instance, a tall mound-shape debris bed can be non-coolable, while the same debris can be coolable if spread uniformly. Decay heat generates a significant amount of thermal energy which goes to production of steam inside the debris bed. Two-phase flow escaping through the top layer of the bed becomes a source of mechanical energy which can move the particulate debris along the slope of the bed. The motion of the debris will lead to flattening of the bed. Such process is often called "self-leveling" phenomenon. Spreading of the debris bed by the self-leveling process can take significant time, depending on the initial debris bed configuration and other parameters. There is a competition between the time scales for reaching (i) a coolable configuration of the bed, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local gas velocity and local slope angle of the bed. In this work we develop a scaling approach and a closure for prediction of debris spreading rate based on generalization of available experimental data. We demonstrate that introduced scaling criteria are universal for particles of different shapes and size distributions.
  •  
7.
  • Basso, Simone, et al. (författare)
  • Preliminary Risk assessment of ex-vessle debris bed coolability for a Nordic BWR
  • Ingår i: Nuclear Engineering and Design. - 0029-5493 .- 1872-759X.
  • Tidskriftsartikel (refereegranskat)abstract
    • In Nordic design of boiling water reactors (BWRs) a deep water pool under the reactor vessel is employed as a severe accident management strategy for the core melt fragmentation and the long term cooling of corium debris. The height and shape of the debris bed are among the most important factors that determine if decay heat can be removed from the porous debris bed by natural circulation of water. The debris bed geometry is formed as a result of melt release, fragmentation, sedimentation and settlement on the containment basemat. After settlement, the shape can change with time due to movement of particles promoted by the coolant flow (debris bed self-leveling process). Both aleatory (accident scenario, stochastic) and epistemic (modeling, lack of knowledge) uncertainties are important for assessing the risks. The present work describes a preliminary risk analysis of debris bed coolability for Nordic BWRs under severe accident conditions. It was assumed that once debris remelting starts containment failure becomes imminent. Such assumption allows to estimate the containment failure probability by calculating the probability that the time necessary for the spreading debris bed to achieve a coolable configuration will be shorter than the onset time of debris bed re-melting. An artificial neural network was employed as a surrogate model (SM) for the mechanistic full model (FM) of the debris spreading in order to achieve computationally efficient propagation of uncertainties. The effect of uncertainty in the ranges and probability density functions (PDFs) of the input parameters was addressed. Parameters defining shapes of the PDFs were varied for three different distribution families (beta, truncated normal and triangular). The results of the risk analysis were reported as complementary cumulative distribution functions (CCDFs) of the conditional containment failure probability (CCFP). It is demonstrated that CCFP can vary in wide ranges depending on the randomly selected combinations of the PDFs of the input parameters. Given the selected ranges of the input parameters, sensitivity analyses identified: the effective particle diameter and the debris bed porosity as the largest contributors to the CCFP uncertainty. It was shown that the self-leveling phenomenon reduces sensitivity of debris coolability to the initial shape of the bed. However, the initial shape remains an important uncertainty factor for the most likely values of the particle size and porosity. Importance of the initial shape increases when the effectiveness of the self-leveling is small (e.g. in case of high initial temperature or heat up rate of the debris). Findings of this work in combination with consideration of the necessary efforts can be used for prioritization of the future research on obtaining new information on the uncertain parameters.
  •  
8.
  • Basso, Simone, et al. (författare)
  • Sensitivity and uncertainty analysis for predication of particulate debris bed self-leveling in prototypic Severe Accident (SA) conditions
  • 2014
  • Ingår i: Proceedings of ICAPP 2014. - : American Nuclear Society. ; , s. 14329-
  • Konferensbidrag (refereegranskat)abstract
    • Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. Success of the strategy is contingent upon effectiveness of natural circulation in removing the decay heat generated by the porous debris bed. Geometrical configuration of the bed is one of the factors which affect coolability of the bed. Boiling and two-phase flow inside the bed serve as a source of mechanical energy which can change the geometry of the debris bed by so called “self-leveling” phenomenon. The goals of this work are (i) to further develop self-leveling modeling approach and validate it against data produced in a new series of PDS-C (Particulate Debris Spreading Closures) experiments, and (ii) to carry out sensitivity-uncertainty analysis for the debris bed spreading for the selected cases of prototypic severe accident conditions. The model has been extended to predict spreading in both planar and axisymmetric geometries. The performed sensitivity analysis ranks the importance of different uncertain input parameters such as accident conditions, debris bed properties, modeling parameters and closures. The knowledge about the most influential parameters is important for further improvement of the model and for efficient reduction of output uncertainties through focused, separate-effect experimental studies. Finally, we report results for particulate debris spreading in prototypic severe accident scenarios with assessment of uncertainties.
  •  
9.
  • Basso, Simone, et al. (författare)
  • The effect of self-leveling on debris bed coolability under severe accident conditions
  • 2016
  • Ingår i: Nuclear Engineering and Design. - : Elsevier. - 0029-5493 .- 1872-759X. ; 305, s. 246-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Nordic-type boiling water reactors employ melt fragmentation, quenching, and long term cooling of the debris bed in a deep pool of water under the reactor vessel as a severe accident (SA) mitigation strategy. The height and shape of the bed are among the most important factors that determine if decay heat can be removed from the porous debris bed by natural circulation of water. The debris bed geometry depends on its formation process (melt release, fragmentation, sedimentation and settlement on the containment basemat), but it also changes with time afterwards, due to particle redistribution promoted by coolant flow (self-leveling). The ultimate goal of this work is to develop an approach to the assessment of the probability that debris in such a variable-shape bed can reach re-melting (which means failure of SA mitigation strategy), i.e. the time necessary for the slumping debris bed to reach a coolable configuration is larger than the time necessary for the debris to reach the re-melting temperature. For this purpose, previously developed models for particulate debris spreading by self-leveling and debris bed dryout are combined to assess the time necessary to reach a coolable state and evaluate its uncertainty. Sensitivity analysis was performed to screen out less important input parameters, after which Monte Carlo simulation was carried out in order to collect statistical characteristics of the coolability time. The obtained results suggest that, given the parameters ranges typical of Nordic BWR5, only a small fraction of debris beds configurations exhibits the occurrence of dryout. Of the initially non-coolable configurations, a significant portion becomes coolable due to debris bed self-leveling.
  •  
10.
  • Basso, Simone, et al. (författare)
  • Validation of DECOSIM code against experiments on particle spreading by two-phase flows in water pool
  • 2016
  • Ingår i: Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety, NUTHOS-11.
  • Konferensbidrag (refereegranskat)abstract
    • Validation simulations by DECOSIM code are performed against recent PDS-P experiments on particle spreading in a planar vertical water pool with bottom air injection. The model implemented in the code considers two-fluid formulation (water, air), turbulence effects in liquid phase are taken into account by k-epsilon model with additional generation terms accounting for two-phase effects. Particles are described by Lagrangian model, with turbulent dispersion modeled by random-walk model. Simulations are performed in conditions corresponding to experimental setup, the test section was a plane rectangular tank of variable length (0.9 and 1.5 m) and pool depth (0.5, 0.7, and 0.9 m), the superficial gas injection velocity ranged between 0.12 and 0.69 m/s. Sedimentation of spherical stainless steel (1.5 and 3 mm) and glass (3 mm) particles was calculated and compared with experiments with respect to the mean spreading distance and lateral distributions of mass fraction of particles. Reasonable agreement between the results obtained and experimental measurements is achieved for all pool geometries, gas injection rates, and particle types, confirming adequacy of the modeling approach and suitability of DECOSIM code for severe accident analysis related to debris bed formation. Possible ways to further reduction of uncertainty in model validation are discussed.
  •  
11.
  • Cherepov, Sergiy, et al. (författare)
  • Micromagnetics of Spin-Flop Bilayers : S, C, and Vortex Spin States
  • 2010
  • Ingår i: IEEE transactions on magnetics. - 0018-9464 .- 1941-0069. ; 46:6, s. 2124-2127
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-flop tunnel junctions subjected to strong gigahertz excitations are found to exhibit highly stable resistance states, intermediate between the two spin-uniform ground states of high and low resistance. The associated spin distributions are necessarily nonuniform and differ significantly from the ground-state anti-parallel spin configuration in their static and dynamic properties. Detailed micromagnetic modeling reveals that inplane spin vortices in dipole-coupled thin-film bilayers are stable spin configurations, where the orientation of the vortex cores and the vortex chirality play an important role in the response of the system to external magnetic fields.
  •  
12.
  • Grishchenko, Dmitry, et al. (författare)
  • Insight into steam explosion in stratified melt-coolant configuration
  • 2013
  • Ingår i: 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics.
  • Konferensbidrag (refereegranskat)abstract
    • Release of core melt from failed reactor vessel into a pool of water is adopted in several existing designs of light water reactors (LWRs) as an element of severe accident  mitigation  strategy.  When  vessel  breach  is  large  and  water  pool  is shallow,  released  corium  melt  can  reach  containment  floor  in  liquid  form  and spread under water creating a stratified configuration of melt covered by coolant. Steam  explosion  in  such  stratified  configuration  was  long  believed  as  of secondary importance for reactor safety because it was assumed that considerable mass of melt cannot be premixed with the coolant. In this work we revisit these assumptions  using  recent  experimental  observations  from  the  stratified  steam explosion tests  in  PULiMS  facility.  We  demonstrate  that  (i)  considerable  melt-coolant premixing layer can be formed in the stratified configuration with high temperature  melts,  (ii)  mechanism  responsible  for  the  premixing  is  apparently more  efficient  than  previously  assumed  Rayleigh-Taylor  or  Kelvin-Helmholtz instabilities.  We  also  provide  data  on  measured  and  estimated  impulses, energetics  of  steam  explosion,  and  resulting  thermal  to  mechanical  energy conversion ratios. 
  •  
13.
  • Hoseyni, Seyed Mohsen, et al. (författare)
  • Melt infiltration through porous debris at temperatures above Solidification : Validation of analytical model
  • 2021
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 161, s. 108435-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the dynamics of melt infiltration through a preheated porous debris bed which is of importance to severe accident modeling in nuclear power plants. Proper understanding of the flow physics and affecting parameters is needed to define flow regime(s) according to combination of the driving forces, i.e. capillary and gravity. A model development and validation therefore should consider various effects and competing mechanisms. After a careful study of the governing equations and scaling rules, a known analytical model is validated against existing experimental data from REMCOD experiment. The predictions of this model are in good agreement with the experimental data. Furthermore, a global sensitivity analysis identifies the most influential parameters and reveals the need for further experiments with different range of affecting parameters. The results underline the importance of permeability as the most influential parameter.
  •  
14.
  • Hoseyni, Seyed Mohsen, et al. (författare)
  • Metallic melt infiltration in preheated debris bed and the effect of solidification
  • 2021
  • Ingår i: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 379, s. 111229-
  • Tidskriftsartikel (refereegranskat)abstract
    • The re-melting of multi-component debris is important for both in-vessel and ex-vessel phases of severe accident progression in nuclear power plants. However, current knowledge is limited with respect to understanding the associated complex phenomena and their interactions. In this paper, the phenomenon of melt infiltration through a porous debris bed with and without solidification is examined by synthesizing the data obtained from ongoing experimental research (REMCOD facility). In this regard, results obtained from 12 experiments are analyzed. Eight tests were conducted for melt infiltration through debris at temperatures above solidification. At this condition, two flow regimes are identified for the melt flow inside the hot porous debris, which is initially dominated by capillary forces and hydrostatic head and then later by the gravity forces. In addition, 4 tests were performed for melt penetration into cold debris where melt infiltration is limited by solidification. It was found that the depth of penetration is correlated with the difference between "sensible heat of melt" and "the amount of heat required to heat the bed up to the melting point of specific melt composition."
  •  
15.
  • Hotta, A., et al. (författare)
  • Experimental and Analytical Investigation of Formation and Cooling Phenomena in High Temperature Debris Bed
  • 2019
  • Ingår i: Journal of Nuclear Science and Technology. - : Taylor and Francis Ltd.. - 0022-3131 .- 1881-1248.
  • Tidskriftsartikel (refereegranskat)abstract
    • Key phenomena in the cooling states of underwater debris beds were classified based on the premise that a target debris bed has a complicated geometry, nonhomogeneous porosity, and volumetric heat. These configurations may change due to the molten jet breakup, droplet agglomeration, anisotropic melt spreading, two-phase flow in a debris bed, particle self-leveling and penetration of molten metals into a particle bed. Based on these classifications, the modular code system THERMOS was designed for evaluating the cooling states of underwater debris beds. Three tests, DEFOR-A, PULiMS, and REMCOD were carried in six phases to extend the existing database for validating implemented models. Up to Phase-5, the main part of these tests has been completed and the test plan has been modified from the original one due to occurrences of unforeseeable phenomena and changes in test procedures. This paper summarizes the entire test plan and representative data trends prior to starting individual data analyses and validations of specific models that are planned to be performed in the later phases. Also, it tries to timely report research questions to be answered in future works, such as various scales of melt-coolant interactions observed in the shallow pool PULiMS tests.
  •  
16.
  • Konovalenko, Alexander, 1975-, et al. (författare)
  • Controllable Generation of a Submillimeter Single Bubble in Molten Metal Using a Low-Pressure Macrosized Cavity
  • 2017
  • Ingår i: Metallurgical and materials transactions. B, process metallurgy and materials processing science. - : SPRINGER. - 1073-5615 .- 1543-1916. ; 48:2, s. 1064-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a method for generation of a single gas bubble in a pool of molten metal. The method can be useful for applications and research studies where a controllable generation of a single submillimeter bubble in opaque hot liquid is required. The method resolves difficulties with bubble detachment from the orifice, wettability issues, capillary channel and orifice surfaces degradation due to contact with corrosive hot liquid, etc. The macrosized, 5- to 50-mm(3) cavity is drilled in the solid part of the pool. Flushing the cavity with gas, vacuuming it to low pressure, as well as sealing and consequent remelting cause cavity implosion due to a few orders in magnitude pressure difference between the cavity and the molten pool. We experimentally demonstrate a controllable production of single bubbles ranging from a few milliliters down to submillimeter size. The uncertainties in size and bubble release timing are estimated and compared with experimental observations for bubbles ranging within 0.16 to 4 mm in equivalent-volume sphere diameter. Our results are obtained in heavy liquid metals such as Wood's and Lead-Bismuth eutectics at 353 K to 423 K (80 A degrees C to 150 A degrees C).
  •  
17.
  • Konovalenko, Alexander, 1975-, et al. (författare)
  • Development of Scaling Approach for Prediction of Terminal Spread Thickness of Melt Poured into a Pool of Water
  • 2012
  • Ingår i: The 9th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9), Kaohsiung, Taiwan, September 9-13, 2012.
  • Konferensbidrag (refereegranskat)abstract
    • Corium melt stabilization and long term cooling in a pool of water located beneath reactor vessel is adopted in several existing designs of light water reactors (LWRs) as an element in severe accident (SA) mitigation strategy. At certain conditions of melt release into the pool (e.g. large ratio of the vessel breach size to the pool depth), liquid melt can spread under water and reach a coolable configuration. Coolability of the melt is contingent on terminal spread thickness of the melt layer \delta_{sp} which defines decay heat generated per unit area of the melt surface. The thickness of the melt layer is determined by the competition between characteristic time scales of hydrodynamic melt spreading and solidification of the melt. This paper presents a modification of the scaling approach, originally proposed by Dinh et al. (2000) for prediction of the terminal melt spread thickness, to the case when liquid melt jet is poured into a pool of water and allow to spread unrestricted on a horizontal floor of the pool. Modified scaling approach takes into account mass and heat losses during to melt jet interaction with the coolant. The hydrodynamic spreading timescale is described with phenomenological approaches proposed by Huppert and Britter (1982) and Britter (1979). Proposed model is validated against PULiMS experiments (Pouring and Underwater Liquid Melt Spreading Konovalenko et al., 2012). Finally, sensitivity analysis and preliminary assessments of the uncertainties are performed for the PULiMS test conditions.
  •  
18.
  • Konovalenko, Alexander, 1975-, et al. (författare)
  • Experimental and Analytical Study of the Particulate Debris Bed Self-leveling
  • 2012
  • Ingår i: The 9<sup>th</sup> International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9), Kaohsiung, Taiwan, September 9-13, 2012.
  • Konferensbidrag (refereegranskat)abstract
    • Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel is employed as a severe accident (SA) mitigation strategy in several designs of light water reactors (LWR). Geometrical configuration of the debris bed is one of the factors which define if the decay heat can be removed from the debris bed by natural circulation. Boiling and two-phase flow inside the bed also serves as a source of mechanical energy which can reduce the height of the debris bed by so called “self-leveling” phenomenon. However, to be effective in providing a coolable geometrical configuration, self-leveling time scale has to be smaller than the time scale for drying out and onset of re-melting of the bed. This paper presents results of experimental and analytical studies concerning the self-leveling phenomenon. The goal of this work is to assess characteristic time scale of particulate debris spreading. In the experiments on the particulate debris spreading air injection at the bottom of the bed is used to simulate steam flow through the porous debris bed. A series of test have been carried out to study the influence of particles size and density, roughness of the spreading plate, gas flow rate etc. on particulate spreading. A semi-empirical model for predicting the spreading of particulate debris has been developed using experimental closures for debris mass flow rate as a function of local (i) angle of the bed and (ii) gas flux. The comparison between the model prediction and the experimental observations shows a good agreement.
  •  
19.
  • Konovalenko, Alexander, et al. (författare)
  • Experimental investigation of particulate debris spreading in a pool
  • 2016
  • Ingår i: Nuclear Engineering and Design. - : Elsevier. - 0029-5493 .- 1872-759X. ; 297, s. 208-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Termination of severe accident progression by core debris cooling in a deep pool of water under reactor vessel is considered in several designs of light water reactors. However, success of this accident mitigation strategy is contingent upon the effectiveness of heat removal by natural circulation from the debris bed. It is assumed that a porous bed will be formed in the pool in the process of core melt fragmentation and quenching. Debris bed coolability depends on its properties and system conditions. The properties of the bed, including its geometry are the outcomes of the debris bed formation process. Spreading of the debris particles in the pool by two-phase turbulent flows induced by the heat generated in the bed can affect the shape of the bed and thus influence its coolability. The goal of this work is to provide experimental data on spreading of solid particles in the pool by large-scale two-phase flow. The aim is to provide data necessary for understanding of separate effects and for development and validation of models and codes. Validated codes can be then used for prediction of debris bed formation under prototypic severe accident conditions. In PDS-P (Particulate Debris Spreading in the Pool) experiments, air injection at the bottom of the test section is employed as a means to create large-scale flow in the pool in isothermal conditions. The test section is a rectangular tank with a 2D slice geometry, it has fixed width (72 mm), adjustable length (up to 1.5 m) and allows water filling to the depth of up to 1 m. Variable pool length and depth allows studying two-phase circulating flows of different characteristic sizes and patterns. The average void fraction in the pool is determined by video recording and subsequent image processing. Particles are supplied from the top of the facility above the water surface. Results of several series of PDS-P experiments are reported in this paper. The influence of the gas flow rate, pool dimensions, particle density and size on spreading of the particles is addressed. A preliminary scaling approach is proposed and shown to provide good agreement with the experimental findings.
  •  
20.
  • Konovalenko, Alexander, 1975-, et al. (författare)
  • Experimental Results on Pouring and Underwater Liquid Melt Spreading and Energetic Melt-coolant Interaction
  • 2012
  • Ingår i: Proceedings of The 9th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9), Kaohsiung, Taiwan, September 9-13. - : American Nuclear Society.
  • Konferensbidrag (refereegranskat)abstract
    • In a hypothetical light water reactor (LWR) core-melt accident with corium release from the reactor  vessel,  the  ultimate  containment  integrity  is  contingent  on  coolability  of  the decay-heated core debris. Pouring of melt into a pool of water located in the reactor cavity is considered in several designs of existing and new LWRs  as a part of severe accident (SA) management strategies. At certain conditions of melt release into the pool (e.g. large ratio of the  vessel  breach  size  to  the  pool  depth),  liquid  melt  can  spread  under  water  and  reach  a coolable configuration. Coolability of the melt depends on decay heat generated per unit area of the spread melt which is directly proportional to the terminal spread thickness of the melt layer. Thus a success of the debris bed coolability depends on the efficacy of the molten core materials spreading which is limited by rapid solidification  of the melt due to melt-coolant heat transfer. Among the factors which can reduce spreading effectiveness are heat and mass losses of the liquid melt due to fragmentation, cooling and solidification in the process of melt jet pouring into the pool. Previous extensive experimental and analytical works on liquid melt spreading and solidification were focused mostly on analysis of melt spreading in case of melt release through an inclined channel. Melt spreading under water as a result of a jet pouring into a pool, has not been addressed systematically. This paper summarizes first experimental results obtained in the frame of Pouring and Underwater Liquid Melt Spreading (PULiMS) research program. The work is an extension of previously reported by Kudinov et al. [1-4] studies  on debris  bed formation and  agglomeration (DEFOR-A)  phenomena.  In contrast  to DEFOR-A experiments, PULiMS exploratory tests (PULiMS-E) discussed in this work have been performed with a shallow (20 cm) water pool. Up to 78 kg of high melting temperature core melt simulant materials (eutectic mixtures of the binary oxides such as Bi 2 O 3 -WO 3  and ZrO 2 -WO 3 )  is  used  in  each  test.  Initial  melt  superheat  varied  from  70  up  to  300ºC.  In  the paper we discuss: (i) experimental observations  of the  jet  pouring into  a  shallow pool  and underwater  liquid  melt  spreading  on  a  flat  surface;  (ii)  characterization  of  solidified  melt debris;  (iii)  key  physical  processes  as  well  as  melt  material  properties  and  experimental conditions  most  influencing  the  melt  spreading  and  solidification  phenomena.  Produced experimental data can be used for validation of the models for prediction of the underwater liquid melt spreading in case of melt jet pouring in a shallow water pool.
  •  
21.
  • Konovalenko, Alexander, 1975-, et al. (författare)
  • Experiments and Characterization of the Two-Phase Flow Driven Particulate Debris Spreading in the Pool
  • 2014
  • Ingår i: NUTHOS-10. - Okinawa, Japan. ; , s. 1257-
  • Konferensbidrag (refereegranskat)abstract
    • Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. Success of the strategy is contingent upon effectiveness of natural circulation in removing the decay heat generated by the porous debris bed. Geometrical configuration of the bed is one of the factors which affect coolability of the bed. Boiling and two-phase turbulent flows in the pool serve as a source of mechanical energy which can affect the initial geometry as well as dynamically change the shape of already formed debris bed. The main goal of this work is to provide experimental data on spreading of solid particles in the pool by large scale two-phase flow structures induced by gas injection from the bottom. These data are necessary for development and validation of predictive capabilities of computer codes allowing numerical modeling of the debris bed formation at prototypic severe accident conditions.  Results of a new series of PDS-P (Particulate Debris Spreading in the Pool) tests reported in this paper are for two types of tests: (i) the pure two-phase flows without particles and (ii) tests with particles. In both tests series, vapor flows in saturated water are simulated by air injection at the bottom of the facility. Experimental conditions such as gas-phase flow rate and particle properties (density, size etc.) are scaled to maintain relevancy to the prototypic accident conditions. The water pool is constructed as a rectangular tank. It has close to 2D geometry with fixed width (72 mm), variable length (up to 1.6 m) and allows water filling depth of up to 1 m. The variable pool length and depth allows formation of the different in size and pattern two-phase circulating flows. The average void fraction in the pool is determined by video recording and image processing. Particles are supplied from the top of the facility above the water surface. In the separate-effect studies of the influence of two-phase currents on particle trajectories and bed formation, low particle flow rate is required in order to minimize or completely exclude particle-particle interaction.
  •  
22.
  • Konovalenko, Alexander, et al. (författare)
  • Experiments and modeling of particulate debris spreading in a pool
  • 2015
  • Ingår i: International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015, NURETH 2015. - 9781510811843 ; , s. 8055-8068
  • Konferensbidrag (refereegranskat)abstract
    • Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. Success of the strategy is contingent upon effectiveness of natural circulation in removing the decay heat generated by the porous debris bed. Geometrical configuration of the bed is one of the factors which affect coolability of the bed. Boiling and two-phase turbulent flows in the pool serve as a source of mechanical energy which can affect the initial geometry as well as dynamically change the shape of already formed debris bed. The main goal of this work is to provide experimental data on spreading of solid particles in the pool by large scale two-phase flow structures induced by gas injection from the bottom. These data are necessary for development and validation of predictive capabilities of computer codes allowing numerical modeling of the debris bed formation at prototypic severe accident conditions. In PDS-P experiments air injection at the bottom of the test section is employed in order to create large scale flow in the pool. The test section is constructed as a rectangular tank. It has close to 2D geometry with fixed width (72 mm), variable length (up to 1.6 m) and allows water filling depth of up to 1 m. The variable pool length and depth allows formation of the different in size and pattern two-phase circulating flows. Experimental conditions such as gas-phase flow rate and particle properties (density and size) are scaled to maintain relevancy to the prototypic accident conditions. The average void fraction in the pool is determined by video recording and image processing. Particles are supplied from the top of the facility above the water surface. In the separate-effect studies of the influence of two-phase currents on particle trajectories and bed formation, a low particle flow rate is required in order to minimize or completely exclude particle-particle interaction. Results of several series of PDS-P (Particulate Debris Spreading in the Pool) reported in this paper are analyzed analytically. The preliminary scaling approach is proposed and has good agreement with experimental findings.
  •  
23.
  • Konovalenko, Alexander, et al. (författare)
  • On the mechanism of hysteresis in conductance of point contacts to single ferromagnetic films
  • 2007
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 101:9, s. 09A513-1-09A513-3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single nonmagnetic/ferromagnetic interfaces can exhibit magnetic excitations and hysteretic switching, provided that the current density traversing the interface is sufficiently high (greater than or similar to 10(8) A/cm(2)) and the flow regime is diffusive. We measure hysteretic switching in conductance induced by nominally unpolarized electron currents in nanocontacts to thin Co films and successfully model the effect for similar to 20 nm scale point contacts using micromagnetic simulations, which take into account an out of plane stress-induced magnetic anisotropy in the point contact region.
  •  
24.
  • Konovalenko, Alexander, et al. (författare)
  • Spin dynamics of two-coupled nanomagnets in spin-flop tunnel junctions
  • 2009
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 80:14, s. 144425-1-144425-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Collective spin dynamics of two dipole-coupled nanomagnets in spin-flop tunnel junctions are studied experimentally and theoretically. The measured GHz magnetization oscillations reveal several collective spin-precessional modes. Analytical macrospin and numerical micromagnetic models of the spin-flop dynamics are developed, which provide a detailed explanation of the observed frequency spectra in terms of optical, acoustical, and micromagnetic modes in the antiparallel, parallel, and scissor magnetization states of the junctions.
  •  
25.
  • Konovalenko, Alexander, et al. (författare)
  • Spin-torque driven excitations and hysteresis in magnetic point contacts
  • 2006
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 99:8, s. 08G503-1-08G503-3
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic multilayers are known to exhibit magnetization excitations, which are due to exchange fields produced by densely distributed spin-polarized electron currents. We report an observation of such excitations as well as hysteretic spin states produced by unpolarized currents in point contacts to single ferromagnetic layers. By measuring diffusive and ballistic contacts for various material combinations, we investigate the microscopic mechanism of the single interface spin-torque effect and discuss the possible origin of the observed hysteresis.
  •  
26.
  • Konovalenko, Alexander, 1975- (författare)
  • Spin transfer torques and spin dynamics in point contacts and spin-flop tunnel junctions
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The first part of this thesis is an experimental study of the spin-dependent transport in magnetic point contacts. Nano-contacts are produced micromechanically, by bringing a sharpened non-magnetic (N) tip into contact with a ferromagnetic (F) film. The magnetic and magneto-transport properties of such N/F nanocontacts are studied using transport spectroscopy, spanning the ballistic, diffusive, and thermal transport regimes. Single N/F interfaces can exhibit current driven magnetic excitations, which are often manifest as peaks in the differential resistance of a point contact defining the N/F interface. Our experiments show that such surface magnetization excitations, and thus the single-interface spin torques, are observed for diffusive and thermal transport regimes where the conduction electrons experience strong scattering near the N/F interface, and are absent for purely ballistic contacts. We conclude that the single-interface spin torque effect is due to impurity scattering at N/F interfaces. Single N/F interfaces can also exhibit hysteretic conductivity, which is qualitatively similar to the spin-valve effect found in F/N/F trilayers. Based on our measurements of N/F point contacts in the size range of 1-30 nm, we propose two mechanisms of the observed hysteresis. The first mechanism relies on a non-uniform spin distribution near the contact core and is magnetoelastic in origin. This interpretation is in good agreement with some of our experiments on larger point contacts as well as with a numerical micromagnetic model we have developed, where a stress-induced anisotropy creates a non-uniform, domain-wall-like spin distribution in the contact core. The second mechanism we propose is a surface effect which relies on a difference between the surface and interior spins in the ferromagnet in terms of their exchange and anisotropy properties. The surface spin-valve mechanism is in good agreement with the hysteretic magnetoresistance observed for our smallest contacts (~1 nm) and for contacts to nanometer thin ferromagnetic films. This interpretation means that the surface magnetization can be reduced and weakly coupled to the interior spins in the ferromagnet. We find that this surface spin layer can be affected by both external fields and the spin torque of a transport current. The surface magnetization can even form nano-sized spin vorticies at the interface. The nature of the magnetic excitations induced by by nominally unpolarized currents through single N/F interfaces was probed directly using microwave irradiation. We observed two characteristic high-frequency effects: a resonant stimulation of spin-wave modes by microwaves, and a rectification of off-resonant microwave currents by spin-wave nonlinearities in the point contact conductance. These experiments demonstrate that the effects observed are spin-dynamic in nature. In the second part of the thesis we study the spin-dynamics in spin-flop tunnel junctions used in toggle magnetic random access memory. Current pulses in the range of 100 ps used to excite the magnetic moments of the two coupled Py free layers into an oscillatory state, in both the antiparallel and scissor states of the cell. These oscillations are detected directly by measuring the junction resistance in real time with a 6 GHz measurement bandwidth. The junctions had the shape of an ellipse, with lateral size ranging from 350x420 to 400x560 nm. The optical and acoustical precession modes of the the spin-flop trilayer are observed in experiment, as expected from single-domain model. The experimental spectra contain additional features, which are explained using numerical micromagnetic simulations, as originating from magnetic state transitions between different magnetization states with non-uniform spin distributions.
  •  
27.
  • Kudinov, Pavel, 1972-, et al. (författare)
  • Application of integrated deterministic-probabilistic safety analysis to assessment of severe accident management effectiveness in Nordic BWRs
  • 2016
  • Ingår i: 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2017. - : Association for Computing Machinery (ACM).
  • Konferensbidrag (refereegranskat)abstract
    • The goal of this work is to assess effectiveness of severe accident management strategy in Nordic type boiling water reactors (BWRs). Corium melt released into a deep pool of water below reactor vessel is expected to be fragmented to form a porous debris bed coolable by natural circulation of coolant. However, there is a risk that energetic steam explosion or non-coolable debris can threaten containment integrity. Both stochastic accident scenario (aleatory) and modeling (epistemic) uncertainties contribute to the risk assessment. Namely, the effects of melt release characteristics (jet diameter, melt composition, superheat), water pool conditions (i.e. depth and subcooling) at the time of the release, and modeling assumptions have to be quantified in a consistent manner. In order to address the uncertainty, we develop a Risk Oriented Accident Analysis framework (ROAAM+) where all stages of the accident progression are simulated using a set of models coupled through initial and boundary conditions. The analysis starts from plant damage states determined in PSA Level-1 and follows time dependent accident scenarios of core degradation, vessel failure, melt release, steam explosion and debris bed formation and coolability. In order to achieve computational efficiency sufficient for extensive sensitivity, uncertainty, and risk analysis the surrogate modeling approach is used. In the development of simplified but computationally efficient surrogate models (SM), we employ databases of solutions obtained by detailed but computationally expensive full models (FM). The process includes iterative refining of the framework, full and surrogate models in order to achieve completeness, consistency, and transparency in the review of the analysis results. In the paper we present results of the analysis aimed at quantification of uncertainty in the conditional containment failure probability. Specifically, we carry out sensitivity analysis using standalone and coupled models in order to identify the most influential scenario and modeling parameters for each sub-model. We assess the impact of the parameters on the prediction of the “load”, “capacity” and also failure probability. Then we quantify the effect of the most influential parameters on the failure probability. The results are presented using the failure domain approach and second order probability analysis, considering the uncertainty in distributions of the input parameters.
  •  
28.
  • Kudinov, Pavel, et al. (författare)
  • Experimental investigation of debris bed agglomeration and particle size distribution using W03-ZR02 melt
  • 2015
  • Ingår i: International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015, NURETH 2015. - 9781510811843 ; , s. 8046-8054
  • Konferensbidrag (refereegranskat)abstract
    • Nordic BWR severe accident management strategy employs reactor cavity flooding to terminate ex-vessel accident progression. Corium melt released from the reactor pressure vessel is expected to fragment and form a porous debris bed. Success of the SAM strategy is contingent upon possibility to remove the decay heat generated in the debris bed by natural circulation of the coolant. Properties of the debris bed such as particle size, porosity and shape of the bed determine resistance for the coolant flow and thus dryout heat flux. Agglomeration of incompletely solidified debris can create additional obstacles for coolant circulation and thus reduce debris coolability margin. The goal of DEFOR (debris bed formation) experimental work is to provide data necessary for the development of analytical models and approaches for prediction of debris bed formation and agglomeration phenomena. Different corium simulant materials are used in the experiments. Liquid melt jet fragmentation and debris bed formation are considered at different conditions such as melt release (jet diameter, free fall height, etc.), melt superheat, water subcooling and water pool depth. A series of confirmatory DEFOR-A experiments has been carried out with ZrO2-WO3 simulant material. The data on particle size distribution, debris bed porosity and agglomeration is in good agreement with the previous DEFOR-S, DEFOR-A and FARO tests. On average, larger particles were obtained with ZrO2-WO3 melt than with previously used Bi2O3-WO3, size distributions for both melt simulant materials are within the ranges of size distributions observed in FARO tests. The difference between particle sizes in the tests with free falling jets was found to be insignificant. There is a tendency to form slightly larger particles only in the tests with submerged nozzles where melt is released under water with initially small jet velocity. Initial jet velocity also seems to have no visible effect on the fraction of agglomerated debris.
  •  
29.
  • Kudinov, Pavel, et al. (författare)
  • Investigation of Steam Explosion in Stratified Melt-Coolant Configuration
  • 2014
  • Ingår i: The 10<sup>th</sup> International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10). - : Atomic Energy Society of Japan. ; , s. 1316-
  • Konferensbidrag (refereegranskat)abstract
    • We consider steam explosion in stratified melt–coolant configuration. Such configuration, with a liquid corium layer covered by water on top, can be formed in severe accident scenarios (i) with vessel failure and release and spreading of superheated corium melt on a floor of a shallow water pool; (ii) with melt release and spreading in initially dry cavity later flooded with water from the top. In several previous assessments of stratified steam explosion energetics, it was assumed that melt-coolant interface is initially stable and there is no premixing prior to the shock wave propagation. This assumption was instrumental for the conclusion that amount of energy released in stratified steam explosion is limited and steam explosion in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Met Spreading (PULiMS) facility with up to 80 kg of superheated, binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (about one percent). In apparent contradiction with the previous assumptions, the instability of the melt interface and formation of premixing layer were regularly observed in the tests. In this work we presents results of the recent experiments carried out in Steam Explosion in Stratified melt-coolant configuration (SES) facility in order to shed some light on the phenomena and assess the influence of test conditions on the steam explosion energetics.
  •  
30.
  • Kudinov, Pavel, 1972-, et al. (författare)
  • Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials
  • 2017
  • Ingår i: Nuclear Engineering and Design. - : ELSEVIER SCIENCE SA. - 0029-5493 .- 1872-759X. ; 314, s. 182-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.
  •  
31.
  •  
32.
  • Naidyuk, Yu G., et al. (författare)
  • Magnetic unipolar features in conductivity of point contacts between normal and ferromagnetic D-metals (Co, Ni, Fe)
  • 2007
  • Ingår i: Electron Correlation in New Materials and Nanosystems. - 9781402056574 ; , s. 59-69
  • Konferensbidrag (refereegranskat)abstract
    • In nanocontacts between normal and ferromagnetic metals (N-F) abrupt changes of the order of 1 % are detected in differential resistance, dV/dI(V), versus bias voltage, V, on achieving of high current densities, 10(9) A/cm(2). These features in dV/dI(V) are observed when the electron flow is directed from the nonmagnetic metal into the ferromagnet and connected with magnetization excitations in the ferromagnet induced by the current. Applying an external magnetic field leads to a shift of the observed features to higher biasing current, confirming the magnetic nature of the effect. Such effects are observed for the non-ballistic (not spectral) regime of current flow in the nanocontacts. Thus, the current induced magneto-conductance effects in multilayered N-F structures (nanopillars) extensively studied in the recent literature have much more general character and can be stimulated by elastic electron scattering at single N-F interfaces.
  •  
33.
  • Thakre, Sachin, 1984-, et al. (författare)
  • Experimental investigation of solid particle spreading driven by gas injection into a pool of water
  • 2022
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 174, s. 109165-109165
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivated from the fuel–coolant interaction phenomena in boiling water reactors, in the present work, effect of natural convection flows, set during the melt dripping, on the nature of formation of debris bed, of solidified particles, at the bottom floor is studied. Standard shape solid particles are used to simulate the dripping melt and their paths are tracked using a particle tracking technique to acquire additional data such as particles velocity, travel time and path. The experimental studies performed on PDS-P facility are designed to study the separate effects and generate the data for codes validation. A novel particle tracking technique allowed quantification of kinetic properties for every particle. The results helped in refinement of the particles distribution on the floor, quantifying the debris bed shape. Higher pool depths and natural convection flows rates are seen effective in enhancing the distribution of debris particles, creating shallow and well spread debris bed.
  •  
34.
  • Xiang, Yan, et al. (författare)
  • Pre-test simulation and a scoping test for dryout and remelting phenomena of an in-vessel debris bed
  • 2023
  • Ingår i: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 403
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study is intended to investigate the dryout and remelting phenomena of a debris bed during the late phase of an in-vessel severe accident progression. The SIMECO-2 facility at KTH is adapted to conduct the experimental investigation. For selection of an appropriate debris bed in the facility, pre-test simulations are performed by using the COCOMO code to determine: (i) simulant materials of debris particles; (ii) debris bed particle diameters; (iii) configuration and geometry of the debris bed (e.g., shape, layers, dimensions). Candidate particulate beds packed with different mixtures of particles are identified and simulated to obtain their thermal hydraulics in the hemispherical slice test section with radius of 500 mm and width of 120 mm. Based on the simulation results, a particulate bed is chosen and loaded in the SIMECO-2 facility for a scoping investigation. FBG probes with multiple measurement points of each probe are employed to acquire the temperature field of the particulate bed inductively heated. A video recording is applied to detect the dryout and remelting phenomena. In the scoping test, the dryout phenomenon occur first at the elevation of 5 cm from the bed surface under the induction heating power of 14.8 kW, which are comparable with the data predicted by the COCOMO code (6 cm from the bed surface under the heating power of 13.8 kW) in the pre-test simulations.
  •  
35.
  •  
36.
  • Yakush, S. E., et al. (författare)
  • Effect of particle spreading on coolability of Ex-Vessel debris BED
  • 2015
  • Ingår i: International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015, NURETH 2015. - : American Nuclear Society. - 9781510811843 ; , s. 1210-1222
  • Konferensbidrag (refereegranskat)abstract
    • Debris bed formation and coolability are studied by DECOSIM code. Main physical mechanisms affecting dispersed particle spreading in the course of melt-water interaction are considered, and their relevance to the formation of porous debris bed in various melt ejection modes is discussed. Numerical simulations of gradually growing and instantly formed debris beds are performed by DECOSIM code. Also, coupled simulations are carried out in which all mechanisms are taken into account simultaneously. It is shown that particle spreading limits the height of debris bed. Also, it is obtained that in some parameter ranges even if local dryout occurs, further particle spreading can render the debris bed coolable, resulting in its reflooding and quenching of the material.
  •  
37.
  • Yanson, I. K., et al. (författare)
  • Current driven tri-stable resistance states in magnetic point contacts
  • 2009
  • Ingår i: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 21:35
  • Tidskriftsartikel (refereegranskat)abstract
    • Point contacts between normal and ferromagnetic metals are investigated using magnetoresistance and transport spectroscopy measurements combined with micromagnetic simulations. Pronounced hysteresis in the point contact resistance versus both bias current and external magnetic field are observed. It is found that such hysteretic resistance can exhibit, in addition to bi-stable resistance states found in ordinary spin valves, tri-stable resistance states with a middle resistance level. We interpret these observations in terms of surface spin valve and spin vortex states, originating from a substantially modified spin structure at the ferromagnetic interface in the contact core. We argue that these surface spin states, subject to a weakened exchange interaction, dominate the effects of spin transfer torques on the nanometer scale.
  •  
38.
  • Yanson, I. K., et al. (författare)
  • Spectroscopy of phonons and spin torques in magnetic point contacts
  • 2005
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 95:18, s. 186602-1-186602-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.
  •  
39.
  • Yanson, I. K., et al. (författare)
  • Surface Spin-Valve Effect
  • 2007
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 7:4, s. 927-931
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an observation of spin-valve-like hysteresis within a few atomic layers at a ferromagnetic interface. We use phonon spectroscopy of nanometer-sized point contacts as an in situ probe to study the mechanism of the effect. Distinctive energy phonon peaks for contacts with dissimilar nonmagnetic outer electrodes allow localizing the observed spin switching to the top or bottom interfaces for nanometer thin ferromagnetic layers. The mechanism consistent with our data is energetically distinct atomically thin surface spin layers that can form current- or field-driven surface spin-valves within a single ferromagnetic film.
  •  
40.
  • Yanson, I. K., et al. (författare)
  • Vortex-like state observed in ferromagnetic contacts
  • 2010
  • Ingår i: Journal of Physics: Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 200:5, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Point-contacts (PC) offer a simple way to create high current densities, 109 A/cm 2and  beyond,  without  substantial  Joule  heating.   We  have  shown  recently  (Nano  Letters,  7(2007) 927) that conductivity of nanosized PCs between a normal and ferromagnetic metalsexhibits bi-stable hysteretic states versus both bias current and external magnetic field – theeffect typical for spin-valve structures.  Here we report that apart from the bi-stable state athird intermediate-resistance state is occasionally observed.  We interpret this state as due toa spin-vortex in the PC, nucleated either by Oersted field of the bias current and/or by thecircular geometry of PC. The observed three-level-states in the PC conductivity testify that theinterface spins are both weakly coupled to the spins in the bulk and have depressed exchangeinteraction within the surface layer.
  •  
41.
  •  
42.
  • Zhao, Lu (författare)
  • Simulation of Melt Infiltration and Spreading using Moving Particle Semi-implicit Method
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • During a core meltdown severe accident (SA) of light water reactors (LWRs), melt penetration in porous media (so-called melt infiltration) may occur due to melt relocation on top of a debris bed, or after dryout and re-melting of metallic particles containing steel and Zr, and then remelting of more refractory oxidic particles containing fuel and oxidized Zr in a hot zone of a debris bed. Both in-vessel and ex-vessel phases of SA progression may involve melt infiltration. For instance, if a debris bed in the lower head of reactor pressure vessel (RPV) is uncoolable, melt infiltration occurs due to corium debris remelting and can affect RPV failure mode and place. After the lower head failure, molten corium discharges from the RPV, leading to melt spreading in the reactor cavity if the cavity floor is dry or covered by a shallow water pool. In the case of deep water pool below the RPV, remelting of uncoolable debris bed can also result in melt spreading under the water. Clearly, modeling of melt infiltration and spreading are paramount not only to the prediction of severe accident progression, but also for the analyses of corium coolability and retention. In spite of their importance, insufficient work has been done in mechanistic modeling of the phenomena.The objective of this doctoral thesis is to provide high-fidelity predictive capabilities for melt infiltration and spreading, which can be employed to substantiate the understanding of melt infiltration in the RPV and melt spreading in the reactor cavity. The focus of the work is to develop a computational code with multi-physics models for modeling specific phenomena important to melt infiltration and melt spreading. The models and code are based on the Moving Particle Semi-implicit (MPS) method, starting from two-dimensional representation and progressing with three-dimensional simulations.The thesis first describes the MPS method which is a mesh free method suitable for free-surface flow. The governing equations including mass, momentum and energy conservation equations are discretized with particle interaction models, such as gradient model and Laplacian model. Furthermore, models for viscosity and phase change, surface tension and wettability are implemented in the code. Additional models of multi-phase flow, crust formation, and film boiling heat transfer are added for relevant applications.The developed MPS code is then validated against various experiments for analyses of in-vessel melt infiltration, and ex-vessel melt spreading in dry and underwater conditions. In particular, three numerical studies have been conducted to investigate the capabilities of the MPS code for prediction of melt infiltration, melt spreading under dry condition and melt spreading under water. The key points from the numerical studies are as follows.  • The MPS code is applied to predict melt infiltration phenomena in various particulate beds employed in the REMCOD experiments carried out at KTH-NPS with corium simulant materials. The wettability model is implemented, which is characterized by the contact angle between the melt and the debris bed. The REMCOD-E09-C4 and E09-C2 tests are calculated in which melt penetrates through hot debris beds with spherical particles and cylindrical particles, respectively.  Then, the MPS code is applied to simulate the REMCOD-E08-C4 test in which the debris bed temperature is below the melting point of melt, thereby the solidification occurs. The results suggest that the melt infiltration process in the experiment with cylindrical particles can be predicted by using Sauter mean diameter. Additionally, the simulation shows a good agreement with the tests.• The MPS code is further extended and employed for the dry spreading test. A modified crust formation model has been proposed based on rigid body assumption to keep the dynamic shape of crust, which is appropriate for the crust formed at the top surface. Two tests conducted at KTH are simulated as one-dimensional and two-dimensional spreading schemes, respectively. These simulations concentrate on hydrodynamic motion and heat transfer while ignoring the associated phenomena such as MCCI and generation of gaseous concrete decomposition products. The results illustrate the capability of the MPS code predicting melt leading-edge progression and spread thickness in dry cavity.• The MPS code capabilities are further extended to model the specific phenomena appearing during melt spreading over substrates under a water layer, such as multiphase flow and film boiling heat transfer. A smoothing scheme is proposed to replace the real properties of interfacial particles for multiphase flow. The film boiling heat transfer is calculated along the film boiling regime of the boiling curve. For validation, the updated MPS code is then employed to simulate the S3E-2MWS-Ox-1 and PULiMS-E9 tests, which are conducted at KTH. These simulations focus on investigating the thermal-hydraulic characteristics of 1D and 2D melt underwater spreading, and they predict the leading edge progression and terminal spread thickness well.In general, the developed MPS code offers a novel approach to predict melt infiltration in the RPV and melt spreading in the reactor cavity with high fidelity. The insight from the simulations helps the understanding of corium coolability and retention.
  •  
43.
  • Zhao, Lu, et al. (författare)
  • Simulation of melt spreading over dry substrates with the moving particle Semi-implicit method
  • 2023
  • Ingår i: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 405:10, s. 112229-112229
  • Tidskriftsartikel (refereegranskat)abstract
    • In a severe accident scenario of a light water reactor, the spreading of molten core materials (corium) on the floor of the reactor cavity may occur after the failure of the reactor pressure vessel (RPV), resulting in the so-called melt spreading process which is important to assess the melt progression towards containment structures (e.g., the liner) and the potential for ex-vessel coolability of corium. The present study is concerned with the numerical simulation of melt spreading on a dry floor using the Moving Particle Semi-implicit (MPS) method which is mesh free and suitable for such a free-surface flow. Multi-physics models are implemented in the MPS method to enable modeling of physical phenomena occurring in melt spreading process. The emphasis is to develop a crust formation model which is not only appropriate for capturing crust formation at the upper surface but also capable of reproducing the shape of the spread. A genetic algorithm (GA) is also employed to optimize the initial distance between particles. The multi-physics models and GA are coded into a computer program using C programming language. The MPS code is then used to simulate the small-scale pre-test and S3E 3MDS-Ox-2 melt spreading experiment conducted at KTH. The simulation results show the capability of the MPS code predicting melt leading-edge progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy