SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koomey Michael) "

Sökning: WFRF:(Koomey Michael)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bröms, Jeanette E, 1974- (författare)
  • Type III secretion- the various functions of the translocon operon in bacterial pathogenesis
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In order to establish colonisation of a human host, pathogenic Yersinia use a type III protein secretion system to directly intoxicate host immune cells. Activation of this system requires target cell contact and is a highly regulated process. Both the intoxication and regulation events depend on the lcrGVHyopBD translocon operon, which is highly conserved in many bacterial pathogens. In this study, the role of individual operon members was analysed and functional domains identified by using the highly homologous pcrGVHpopBD operon of P. aeruginosa as a comparative tool.Yersinia spp. and P. aeruginosa were shown to form translocation pores of a similar size that promoted equally efficient protein delivery. A strong dependency on interactions between native translocator(s) in protein delivery was revealed, suggesting that each pathogen has delicately fine-tuned this process to suit its own infection niche. In particular, the C-terminus of YopD was shown to possess functional specificity for effector delivery in Yersinia that could not be conferred by the comparable region in homologous PopD. Moreover, a role for LcrV and PcrV in substrate recognition during the protein delivery process was excluded.The N-terminus of LcrH was recognized as a unique regulatory domain, mediating formation of LcrH-YscY regulatory complexes in Yersinia, while equivalent complexes with analogous proteins were not formed in P. aeruginosa. These results compliment the idea that a negative regulatory pathway involving LcrH, YopD, LcrQ and YscY is unique to Yersinia.Finally, PcrH was identified as a new member of the translocator class of chaperones, being essential for assembly of a functional PopB/PopD mediated translocon in P. aeruginosa. However, in contrast to the other members of this family, PcrH was dispensable for type III regulation. Moreover, both LcrH and PcrH were shown to possess tetratricopeptide repeats crucial for their chaperone function. One tetratricopeptide repeat mutant in LcrH was even isolated that failed to secrete both YopB and YopD substrates, even though stability was maintained. This demonstrates for the first time that LcrH has a role in substrate secretion in addition to its critical role in promoting substrate stability.
  •  
2.
  • Egge-Jacobsen, Wolfgang, et al. (författare)
  • O-Linked glycosylation of the PilA pilin protein of francisella tularensis : identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide
  • 2011
  • Ingår i: Journal of Bacteriology. - Baltimore : Williams & Wilkins. - 0021-9193 .- 1098-5530. ; 193:19, s. 5487-5497
  • Tidskriftsartikel (refereegranskat)abstract
    • Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-HexHex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus.
  •  
3.
  • Masnadi, Mohammad S., et al. (författare)
  • Global carbon intensity of crude oil production
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6405, s. 851-853
  • Tidskriftsartikel (refereegranskat)abstract
    • Producing, transporting, and refining crude oil into fuels such as gasoline and diesel accounts for ∼15 to 40% of the “well-to-wheels” life-cycle greenhouse gas (GHG) emissions of transport fuels (1). Reducing emissions from petroleum production is of particular importance, as current transport fleets are almost entirely dependent on liquid petroleum products, and many uses of petroleum have limited prospects for near-term substitution (e.g., air travel). Better understanding of crude oil GHG emissions can help to quantify the benefits of alternative fuels and identify the most cost-effective opportunities for oil-sector emissions reductions (2). Yet, while regulations are beginning to address petroleum sector GHG emissions (3–5), and private investors are beginning to consider climate-related risk in oil investments (6), such efforts have generally struggled with methodological and data challenges. First, no single method exists for measuring the carbon intensity (CI) of oils. Second, there is a lack of comprehensive geographically rich datasets that would allow evaluation and monitoring of life-cycle emissions from oils. We have previously worked to address the first challenge by developing open-source oil-sector CI modeling tools [OPGEE (7, 8), supplementary materials (SM) 1.1]. Here, we address the second challenge by using these tools to model well-to-refinery CI of all major active oil fields globally—and to identify major drivers of these emissions.
  •  
4.
  • Salomonsson, Emelie, et al. (författare)
  • Functional analyses of pilin-like proteins from Francisella tularensis : complementation of type IV pilus phenotypes in Neisseria gonorrhoeae
  • 2009
  • Ingår i: Microbiology. - Berks : Society of general microbiology. - 1350-0872 .- 1465-2080. ; 155, s. 2546-2559
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence from a number of studies strongly suggests that proteins orthologous to those involved in type IV pili (Tfp) assembly and function are required for Francisella pathogenicity. However, the molecular mechanisms by which the components exert their influence on virulence remain poorly understood. Owing to the conservation and promiscuity of Tfp biogenesis machineries, expression of Tfp pilins in heterologous species has been used successfully to analyse organelle structure-function relationships. In this study we expressed a number of Francisella pilin genes in the Tfp-expressing pathogen Neisseria gonorrhoeae lacking its endogenous pilin subunit. Two gene products, the orthologous PiIA proteins from Francisella tularensis subspecies tularensis and novicida, were capable of restoring the expression of Tfp-like appendages that were shown to be dependent upon the neisserial Tfp biogenesis machinery for surface localization. Expression of Francisella PiIA pilins also partially restored competence for natural transformation in N. gonorrhoeae. This phenotype was not complemented by expression of the PuIG and XcpT proteins, which are equivalent components of the related type II protein secretion system. Taken together, these findings provide compelling, although indirect, evidence of the potential for Francisella PiIA proteins to express functional Tfp.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy