SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koper M.) "

Sökning: WFRF:(Koper M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Segev, Gideon, et al. (författare)
  • The 2022 solar fuels roadmap
  • 2022
  • Ingår i: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 55:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Renewable fuel generation is essential for a low carbon footprint economy. Thus, over the last five decades, a significant effort has been dedicated towards increasing the performance of solar fuels generating devices. Specifically, the solar to hydrogen efficiency of photoelectrochemical cells has progressed steadily towards its fundamental limit, and the faradaic efficiency towards valuable products in CO2 reduction systems has increased dramatically. However, there are still numerous scientific and engineering challenges that must be overcame in order to turn solar fuels into a viable technology. At the electrode and device level, the conversion efficiency, stability and products selectivity must be increased significantly. Meanwhile, these performance metrics must be maintained when scaling up devices and systems while maintaining an acceptable cost and carbon footprint. This roadmap surveys different aspects of this endeavor: system benchmarking, device scaling, various approaches for photoelectrodes design, materials discovery, and catalysis. Each of the sections in the roadmap focuses on a single topic, discussing the state of the art, the key challenges and advancements required to meet them. The roadmap can be used as a guide for researchers and funding agencies highlighting the most pressing needs of the field.
  •  
3.
  • Han, Binghong, et al. (författare)
  • Iron-Based Perovskites for Catalyzing Oxygen Evolution Reaction
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:15, s. 8445-8454
  • Tidskriftsartikel (refereegranskat)abstract
    • The slow kinetics of the oxygen evolution reaction (OER) is the main cause of energy loss in many low temperature energy storage techniques, such as metal air batteries and water splitting. A better understanding of both the OER mechanism and the degradation mechanism on different transition metal (TM) oxides is critical for the development of the, next generation of oxides as OER catalysts. In this paper, we systematically investigated the catalytic mechanism and lifetime of ABO(3-delta) perovskite catalysts for the OER, where A = Sr or Ca and B = Fe or Co. During the OER process, the Fe-based AFeO(3-delta) oxides with (delta approximate to 0.5 demonstrate no activation of lattice oxygen or pH dependence of the OER activity, which is different from the SrCoO25 with similar oxygen 2p-band position relative to the Fermi level. The difference was attributed to the larger changes in the electronic structure during the transition from the oxygen-deficient brownmillerite structure to the fully oxidized perovskite structure and the poor conductivity in Fe-based oxides, which hinders the uptake of oxygen from the electrolyte to the lattice under oxidative potentials. The low stability of Fe-based perovskites under OER conditions in a basic electrolyte also contributes to the different OER mechanism compared with the Co-based perovskites. This work reveals the influence of TM composition and electronic structure on the catalytic mechanism and operational stability of the perovskite OER catalysts.
  •  
4.
  • Santasalo-Aarnio, Annukka, et al. (författare)
  • Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC
  • 2011
  • Ingår i: Electrochemistry Communications. ; 13:5, s. 466-469
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxidation of methanol, ethanol and iso-propanol and their respective product formation on platinum and palladium electrodes in alkaline solution are studied by voltammetry combined with high performance liquid chromatography. The oxidation products observed at platinum are formaldehyde and formate for methanol, acetaldehyde and acetate for ethanol and acetone for iso-propanol oxidation. On palladium, the same products (except formaldehyde) are detected. Palladium appears to be a better catalyst for the selective oxidation of the alcohol group in alkaline media, but as soon as poisoning by adsorbed carbon monoxide plays a significant role, such as in methanol oxidation, platinum is the preferred catalyst.
  •  
5.
  • Stoerzinger, Kelsey A., et al. (författare)
  • Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange
  • 2017
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 2:4, s. 876-881
  • Tidskriftsartikel (refereegranskat)abstract
    • RuO2 catalysts exhibit record activities toward the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by density functional theory, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy