SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kordasti Shahram) "

Sökning: WFRF:(Kordasti Shahram)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Porwit, Anna, et al. (författare)
  • Multiparameter flow cytometry in the evaluation of myelodysplasia : Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group
  • 2023
  • Ingår i: Cytometry Part B - Clinical Cytometry. - : Wiley. - 1552-4949 .- 1552-4957. ; 104:1, s. 27-50
  • Forskningsöversikt (refereegranskat)abstract
    • Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in bone marrow (BM) investigation of patients with cytopenia and suspected myelodysplastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients undergoing treatment. This document summarizes recommendations from the International/European Leukemia Net Working Group for Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diagnostic work-up of MDS. Recommendations for the analysis of several BM cell subsets such as myeloid precursors, maturing granulocytic and monocytic components and erythropoiesis are given. A core set of 17 markers identified as independently related to a cytomorphologic diagnosis of myelodysplasia is suggested as mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precursor cell (CD34+CD19−) count >3% should be considered immunophenotypically indicative of myelodysplasia. However, MFC results should always be evaluated as part of an integrated hematopathology work-up. Looking forward, several machine-learning-based analytical tools of interest should be applied in parallel to conventional analytical methods to investigate their usefulness in integrated diagnostics, risk stratification, and potentially even in the evaluation of response to therapy, based on MFC data. In addition, compiling large uniform datasets is desirable, as most of the machine-learning-based methods tend to perform better with larger numbers of investigated samples, especially in such a heterogeneous disease as MDS.
  •  
2.
  • van Leeuwen-Kerkhoff, Nathalie, et al. (författare)
  • Human bone marrow-derived myeloid dendritic cells show an immature transcriptional and functional profile compared to their peripheral blood counterparts and separate from slan+ non-classical monocytes
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9:JUL
  • Tidskriftsartikel (refereegranskat)abstract
    • The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ (cDC2) and CD141+ (cDC1) myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for cDC2 and cDC1 was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production, and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.
  •  
3.
  • van Leeuwen-Kerkhoff, Nathalie, et al. (författare)
  • Transcriptional profiling reveals functional dichotomy between human slan+ non-classical monocytes and myeloid dendritic cells
  • 2017
  • Ingår i: Journal of Leukocyte Biology. - 0741-5400. ; 102:4, s. 1055-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • Human 6-sulfo LacNac-positive (slan+) cells have been subject to a paradigm debate. They have previously been classified as a distinct dendritic cell (DC) subset. However, evidence has emerged that they may be more related to monocytes than to DCs. To gain deeper insight into the functional specialization of slan+ cells, we have compared them with both conventional myeloid DC subsets (CD1c+ and CD141+) in human peripheral blood (PB). With the use of genome-wide transcriptional profiling, as well as functional tests, we clearly show that slan+ cells form a distinct, non-DC-like population. They cluster away from both DC subsets, and their gene-expression profile evidently suggests involvement in distinct inflammatory processes. An extensive transcriptional meta-analysis confirmed the relationship of slan+ cells with the monocytic compartment rather than with DCs. From a functional perspective, their ability to prime CD4+ and CD8+ T cells is relatively low. Combined with the finding that “antigen presentation by MHC class II” is at the top of under-represented pathways in slan+ cells, this points to a minimal role in directing adaptive T cell immunity. Rather, the higher expression levels of complement receptors on their cell surface, together with their high secretion of IL-1β and IL-6, imply a specific role in innate inflammatory processes, which is consistent with their recent identification as non-classical monocytes. This study extends our knowledge on DC/monocyte subset biology under steady-state conditions and contributes to our understanding of their role in immune-mediated diseases and their potential use in immunotherapeutic strategies.
  •  
4.
  • Winter, Susann, et al. (författare)
  • Integrating the "Immunome" in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design
  • 2020
  • Ingår i: Journal of Clinical Oncology. - : American Society of Clinical Oncology (ASCO). - 0732-183X .- 1527-7755. ; 38:15, s. 1723-
  • Forskningsöversikt (refereegranskat)abstract
    • Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and often include a dysregulation and dysfunction of the immune system. In the context of population aging, MDS incidence is set to increase substantially, with exponential increases in health care costs, given the limited and expensive treatment options for these patients. Treatment selection is mainly based on calculated risk categories according to a Revised International Prognostic Scoring System (IPSS-R). However, although IPSS-R is an excellent predictor of disease progression, it is an ineffective predictor of response to disease-modifying therapies. Redressing these unmet needs, the "immunome" is a key, multifaceted component in the initiation and overall response against malignant cells in MDS, and the current omission of immune status monitoring may in part explain the insufficiencies of current prognostic stratification methods. Nevertheless, integrating these and other recent molecular advances into clinical practice proves difficult. This review highlights the complexity of immune dysregulation in MDS pathophysiology and the fine balance between smoldering inflammation, adaptive immunity, and somatic mutations in promoting or suppressing malignant clones. We review the existing knowledge and discuss how state-of-the-art immune monitoring strategies could potentially permit novel patient substratification, thereby empowering practical predictions of response to treatment in MDS. We propose novel multicenter studies, which are needed to achieve this goal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy