SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korhola A.) "

Sökning: WFRF:(Korhola A.)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loisel, J., et al. (författare)
  • Expert assessment of future vulnerability of the global peatland carbon sink
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:1, s. 70-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.
  •  
2.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
3.
  • Sim, Thomas G., et al. (författare)
  • Regional variability in peatland burning at mid-to high-latitudes during the Holocene
  • 2023
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 305
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal re-cords from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (similar to 9e6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
4.
  • Gallego-Sala, Angela V., et al. (författare)
  • Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:10, s. 907-
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
  •  
5.
  •  
6.
  • Leavitt, Peter R., et al. (författare)
  • Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans
  • 2009
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 54:6, s. 2330-2348
  • Forskningsöversikt (refereegranskat)abstract
    • The premise of this article is that climate effects on lakes can be quantified most effectively by the integration of process-oriented limnological studies with paleolimnological research, particularly when both disciplines operate within a common conceptual framework. To this end, the energy (E)-mass (m) flux framework (Em flux) is developed and applied to selected retrospective studies to demonstrate that climate variability regulates lake structure and function over diverse temporal and spatial scales through four main pathways: rapid direct transfer of E to the lake surface by irradiance, heat, and wind; slow indirect effects of E via changes in terrestrial development and subsequent m subsidies to lakes; direct influx of m as precipitation, particles, and solutes from the atmosphere; and indirect influx of water, suspended particles, and dissolved substances from the catchment. Sedimentary analyses are used to illustrate the unique effects of each pathway on lakes but suggest that interactions among mechanisms are complex and depend on the landscape position of lakes, catchment characteristics, the range of temporal variation of individual pathways, ontogenetic changes in lake basins, and the selective effects of humans on m transfers. In particular, preliminary synthesis suggests that m influx can overwhelm the direct effects of E transfer to lakes, especially when anthropogenic activities alter m subsidies from catchments.
  •  
7.
  • Charman, D. J., et al. (författare)
  • Climate-related changes in peatland carbon accumulation during the last millennium
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10:2, s. 929-944
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.
  •  
8.
  • Clarke, A. L., et al. (författare)
  • Long-Term Trends in Eutrophication and Nutrients in the Coastal Zone
  • 2006
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 51:1, s. 385-397
  • Tidskriftsartikel (refereegranskat)abstract
    • We used high-resolution paleoecological records of environmental change to study the rate and magnitude of eutrophication over the last century in two contrasting coastal ecosystems. A multiproxy approach using geochemical and biological indicators and diatom-based transfer functions provides a long-term perspective on changes in nutrient concentrations and the corresponding biological and sedimentary responses. In Roskilde Fjord, Denmark, total nitrogen (TN) increased 85% during the last century, with the most rapid increase occurring after the 1950s, corresponding to the postwar increase in N fertilizer use. In Laajalahti Bay, an urban embayment near Helsinki, Finland, total dissolved nitrogen (TDN) increased with growing wastewater inputs and decreased with the remedial actions taken to reduce these discharges. These changes are small relative to the order of magnitude increases in nutrient loading that have occurred in northwestern Europe, where the dissolved inorganic nitrogen (DIN) load has increased more than threefold in certain areas.
  •  
9.
  •  
10.
  • Nicolle, M, et al. (författare)
  • Climate variability in subarctic area for the last two millennia
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:1, s. 101-116
  • Tidskriftsartikel (refereegranskat)abstract
    • To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA) was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ∼16–30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ∼20–30- and ∼50–90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice–temperature positive feedback.
  •  
11.
  • Ruppel, M. M., et al. (författare)
  • Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard)
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:20, s. 11447-11460
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) is a light-absorbing particle that warms the atmosphere-Earth system. The climate effects of BC are amplified in the Arctic, where its deposition on light surfaces decreases the albedo and causes earlier melt of snow and ice. Despite its suggested significant role in Arctic climate warming, there is little information on BC concentrations and deposition in the past. Here we present results on BC (here operationally defined as elemental carbon (EC)) concentrations and deposition on a Svalbard glacier between 1700 and 2004. The inner part of a 125m deep ice core from Holtedahlfonna glacier (79 degrees 8'N, 13 degrees 16'E, 1150 m a.s.l.) was melted, filtered through a quartz fibre filter and analysed for EC using a thermal-optical method. The EC values started to increase after 1850 and peaked around 1910, similar to ice core records from Greenland. Strikingly, the EC values again increase rapidly between 1970 and 2004 after a temporary low point around 1970, reaching unprecedented values in the 1990s. This rise is not seen in Greenland ice cores, and it seems to contradict atmospheric BC measurements indicating generally decreasing atmospheric BC concentrations since 1989 in the Arctic. For example, changes in scavenging efficiencies, post-depositional processes and differences in the vertical distribution of BC in the atmosphere are discussed for the differences between the Svalbard and Greenland ice core records, as well as the ice core and atmospheric measurements in Svalbard. In addition, the divergent BC trends between Greenland and Svalbard ice cores may be caused by differences in the analytical methods used, including the operational definitions of quantified particles, and detection efficiencies of different-sized BC particles. Regardless of the cause of the increasing EC values between 1970 and 2004, the results have significant implications for the past radiative energy balance at the coring site.
  •  
12.
  • Arneth, Almut, et al. (författare)
  • Terrestrial biogeochemical feedbacks in the climate system
  • 2010
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 3:8, s. 525-532
  • Forskningsöversikt (refereegranskat)abstract
    • The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m(-2) K-1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.
  •  
13.
  • Catalan, Jordi, et al. (författare)
  • Global change revealed by palaeolimnological records from remote lakes : a review
  • 2013
  • Ingår i: Journal of Paleolimnology. - : Springer Netherlands. - 0921-2728 .- 1573-0417. ; 49:3, s. 513-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship.
  •  
14.
  • Prowse, Terry, et al. (författare)
  • Arctic Freshwater Ice and Its Climatic Role
  • 2011
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 40:Suppl 1, s. 46-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater ice dominates the Arctic terrestrial environment and significantly impacts bio-physical and socio-economic systems. Unlike other major cryospheric components that either blanket large expanses (e.g., snow, permafrost, sea ice) or are concentrated in specific locations, lake and river ice are interwoven into the terrestrial landscape through major flow and storage networks. For instance, the headwaters of large ice-covered rivers extend well beyond the Arctic while many northern lakes owe their genesis to broader cryospheric changes. The effects of freshwater ice on climate mostly occur at the local/regional scale, with the degree of influence dependent on the magnitude, timing, location, and duration of ice cover, and the size of the water body. Freshwater-ice formation, growth, decay, and break-up are influenced by climatic variables that control surface heat fluxes, but these differ markedly between lakes and rivers. Despite the importance of freshwater ice, there has been a recent reduction in observational recordings.
  •  
15.
  • Prowse, Terry, et al. (författare)
  • Effects of Changes in Arctic Lake and River Ice
  • 2011
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 40:Suppl 1, s. 63-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic changes to freshwater ice in the Arctic are projected to produce a variety of effects on hydrologic, ecological, and socio-economic systems. Key hydrologic impacts include changes to low flows, lake evaporation regimes and water levels, and river-ice break-up severity and timing. The latter are of particular concern because of their effect on river geomorphology, vegetation, sediment and nutrient fluxes, and sustainment of riparian aquatic habitats. Changes in ice phenology will affect a wide range of related biological aspects of seasonality. Some changes are likely to be gradual, but others could be more abrupt as systems cross critical ecological thresholds. Transportation and hydroelectric production are two of the socio-economic sectors most vulnerable to change in freshwater-ice regimes. Ice roads will require expensive on-land replacements while hydroelectric operations will both benefit and be challenged. The ability to undertake some traditional harvesting methods will also be affected.
  •  
16.
  • Prowse, Terry, et al. (författare)
  • Past and Future Changes in Arctic Lake and River Ice
  • 2011
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 40:Suppl 1, s. 53-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Paleolimnological evidence from some Arctic lakes suggests that longer ice-free seasons have been experienced since the beginning of the nineteenth century. It has been inferred from some additional records that many Arctic lakes may have crossed an important ecological threshold as a result of recent warming. In the instrumental record, long-term trends exhibit increasingly later freeze-ups and earlier break-ups, closely corresponding to increasing air temperature trends, but with greater sensitivity at the more temperate latitudes. Broad spatial patterns in these trends are also related to major atmospheric circulation patterns. Future projections of lake ice indicate increasingly later freeze-ups and earlier break-ups, decreasing ice thickness, and changes in cover composition, particularly white-ice. For rivers, projected future decreases in south to north air-temperature gradients suggest that the severity of ice-jam flooding may be reduced but this could be mitigated by changes in the magnitude of spring snowmelt.
  •  
17.
  • Ruppel, Meri M., et al. (författare)
  • Do contemporary (1980-2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:20, s. 12779-12795
  • Tidskriftsartikel (refereegranskat)abstract
    • The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.
  •  
18.
  •  
19.
  •  
20.
  • Väliranta, Minna, et al. (författare)
  • Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces
  • 2021
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 264
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of permafrost aggradation on greenhouse gas (GHG) dynamics and climate forcing have not been previously quantified. Here, we reconstruct changes in GHG balances over the late Holocene for a sub-arctic peatland by applying palaeoecological data combined with measured GHG flux data, focusing on the impact of permafrost aggradation in particular. Our data suggest that permafrost initiation around 3000 years ago resulted in GHG emissions, thereby slightly weakening the general long-term peatland cooling impact. As a novel discovery, based on our chronological data of bare peat surfaces, we found that current sporadic bare peat surfaces in subarctic regions are probably remnants of more extensive bare peat areas formed by permafrost initiation. Paradoxically, our data suggest that permafrost initiation triggered by the late Holocene cooling climate generated a positive radiative forcing and a short-term climate warming feedback, mitigating the general insolation-driven late Holocene summer cooling trend. Our work with historical data demonstrates the importance of permafrost peatland dynamics for atmospheric GHG concentrations, both in the past and future. It suggests that, while thawing permafrost is likely to initially trigger a change towards wetter conditions and consequent increase in CH4 forcing, eventually the accelerated C uptake capacity under warmer climate may overcome the thaw effect when a new hydrological balance becomes established.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy