SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kornhuber Kai) "

Sökning: WFRF:(Kornhuber Kai)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kornhuber, Kai, et al. (författare)
  • Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions
  • 2020
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10:1, s. 48-53
  • Tidskriftsartikel (refereegranskat)abstract
    • In an interconnected world, simultaneous extreme weather events in distant regions could potentially impose high-end risks for societies(1,2). In the mid-latitudes, circumglobal Rossby waves are associated with a strongly meandering jet stream and might cause simultaneous heatwaves and floods across the northern hemisphere(3-6). For example, in the summer of 2018, several heat and rainfall extremes occurred near-simultaneously(7). Here we show that Rossby waves with wavenumbers 5 and 7 have a preferred phase position and constitute recurrent atmospheric circulation patterns in summer. Those patterns can induce simultaneous heat extremes in specific regions: Central North America, Eastern Europe and Eastern Asia for wave 5, and Western Central North America, Western Europe and Western Asia for wave 7. The probability of simultaneous heat extremes in these regions increases by a factor of up to 20 for the most severe heat events when either of these two waves dominate the circulation. Two or more weeks per summer spent in the wave-5 or wave-7 regime are associated with 4% reductions in crop production when averaged across the affected regions, with regional decreases of up to 11%. As these regions are important for global food production, the identified teleconnections have the potential to fuel multiple harvest failures, posing risks to global food security(8). A large-scale meandering in the jet stream can cause simultaneous heat extremes in distant regions. When Rossby waves with wavenumbers 5 and 7 dominate circulation, there is an increased risk of heat extremes across major food-producing regions, raising the potential of multiple crop failures.
  •  
2.
  • Kornhuber, Kai, et al. (författare)
  • Recent Increase in a Recurrent Pan-Atlantic Wave Pattern Driving Concurrent Wintertime Extremes
  • 2023
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:9, s. e1694-E1708
  • Tidskriftsartikel (refereegranskat)abstract
    • Wintertime extremes such as cold spells and heavy precipitation can have severe socioeconomic impacts, disrupting critical infrastructures and affecting human well-being. Here, we relate the occurrence of local and concurrent cold or wet wintertime extremes in North America and Europe to a recurrent, quasi-hemispheric wave-4 Rossby wave pattern. We identify this pattern as a fundamental mode of the Northern Hemisphere (NH) winter circulation, since wave 4 exhibits phase-locking behavior. Thus, the associated atmospheric circulation and surface anomalies reoccur over the same locations when the pattern’s wave amplitude is high. The wave pattern is most pronounced over the pan-Atlantic region, and increases the probability of extreme cold or wet events by up to 300% in certain areas of North America and Europe, as well as favoring their concurrence at different locations. High-amplitude wave-4 events have increased significantly in frequency over the past four decades (1979–2021), although no clear evidence is found relating this to modes or patterns of climate variability. The identified wave pattern may provide pathways for early prediction of local and concurrent cold or wet wintertime extremes in North America and Europe.
  •  
3.
  • Luo, Fei, et al. (författare)
  • Summertime Rossby waves in climate models : Substantial biases in surface imprint associated with small biases in upper-level circulation
  • 2022
  • Ingår i: Weather and Climate Dynamics. - : Copernicus GmbH. - 2698-4016. ; 3:3, s. 905-935
  • Tidskriftsartikel (refereegranskat)abstract
    • In boreal summer, circumglobal Rossby waves can promote stagnating weather systems that favor extreme events like heat waves or droughts. Recent work showed that amplified Rossby wavenumber 5 and 7 show phase-locking behavior which can trigger simultaneous warm anomalies in different breadbasket regions in the Northern Hemisphere. These types of wave patterns thus pose a potential threat to human health and ecosystems. The representation of such persistent wave events in summer and their surface anomalies in general circulation models (GCMs) has not been systematically analyzed. Here we validate the representation of wavenumbers 1-10 in three state-of-The-Art global climate models (EC-Earth, CESM, and MIROC), quantify their biases, and provide insights into the underlying physical reasons for the biases. To do so, the ExtremeX experiments output data were used, consisting of (1) historic simulations with a freely running atmosphere with prescribed ocean and experiments that additionally (2) nudge towards the observed upper-level horizontal winds, (3) prescribe soil moisture conditions, or (4) do both. The experiments are used to trace the sources of the model biases to either the large-scale atmospheric circulation or surface feedback processes. Focusing on wave 5 and wave 7, we show that while the wave's position and magnitude are generally well represented during high-Amplitude (>g 1.5 SD) episodes, the associated surface anomalies are substantially underestimated. Near-surface temperature, precipitation and mean sea level pressure are typically underestimated by a factor of 1.5 in terms of normalized standard deviations. The correlations and normalized standard deviations for surface anomalies do not improve if the soil moisture is prescribed. However, the surface biases are almost entirely removed when the upper-level atmospheric circulation is nudged. When both prescribing soil moisture and nudging the upper-level atmosphere, then the surface biases remain quite similar to the experiment with a nudged atmosphere only. We conclude that the near-surface biases in temperature and precipitation are in the first place related to biases in the upper-level circulation. Thus, relatively small biases in the models' representation of the upper-level waves can strongly affect associated temperature and precipitation anomalies.
  •  
4.
  • Messori, Gabriele, et al. (författare)
  • Compound Climate Events and Extremes in the Midlatitudes Dynamics, Simulation, and Statistical Characterization
  • 2021
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:4, s. E774-E781
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The workshop, conducted virtually due to travel restrictions related to COVID-19, gathered scientists from six countries and focused on the mechanistic understanding, statistical characterization, and modeling of societally relevant compound climate events and extremes in the midlatitudes. These ranged from co-occurring hot–humid or wet–windy extremes, to spatially compounding wet and dry extremes, to temporallycompounding hot–wet events and more. The aim was to bring together selected experts studying a diverse range of compound climate events and extremes to present their ongoing work and outline challenges and future developments in this societally relevant field of research.
  •  
5.
  • Petoukhov, Vladimir, et al. (författare)
  • Alberta wildfire 2016 : Apt contribution from anomalous planetary wave dynamics
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In May-June 2016 the Canadian Province of Alberta suffered one of the most devastating wildfires in its history. Here we show that in mid-April to early May 2016 the large-scale circulation in the mid-and high troposphere of the middle and sub-polar latitudes of the northern hemisphere featured a persistent high-amplitude planetary wave structure dominated by the non-dimensional zonal wave number 4. The strongest anticyclonic wing of this structure was located over western Canada. In combination with a very strong El Nino event in winter 2015/2016 this favored highly anomalous, tinder-dry and high-temperature conditions at the surface in that area, entailing an increased fire hazard there. This critically contributed to the ignition of the Alberta Wildfire in May 2016, appearing to be the costliest disaster in Canadian history thus far.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy