SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koschmieder S.) "

Sökning: WFRF:(Koschmieder S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Beck, R, et al. (författare)
  • Hyaluronic Acid as an Alternative to Autologous Human Serum Eye Drops: Initial Clinical Results with High-Molecular-Weight Hyaluronic Acid Eye Drops
  • 2019
  • Ingår i: Case reports in ophthalmology. - : S. Karger AG. - 1663-2699. ; 10:2, s. 244-255
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • <b><i>Introduction:</i></b> Autologous serum eye drops (ASED) are used in the treatment of most severe stages of dry eye. Once introduced, it is currently considered impossible to return to other lubricating eye drops or other commercially available therapeutic regimen. <b><i>Materials and Methods:</i></b> In a randomized study, non-preserved high-molecular-weight hyaluronic acid eye drops were offered as an alternative to 11 patients using autologous serum treatment for at least 3 months. The control group (<i>n</i> = 5) continued their treatment with ASED. The verum group (<i>n</i> = 6) used very-high-molecular-weight hyaluronic eye drops (Comfort Shield®) instead of the ASED. <b><i>Results:</i></b> From four of initially six patients in the verum group that finished the study, 2 (50%) preferred to stay with the very-high-molecular-weight hyaluronic acid eye drops beyond the trial period, the other two returned to the earlier therapy with ASED. The control group continued their treatment as before and finished the study after 8 weeks. <b><i>Conclusion:</i></b> For the first time, artificial eye drops, i.e., high-molecular-weight hyaluronic acid eye drops, offered an acceptable alternative to ASED. Some patients perceived these drops as even better than the patient’s own serum. This is the first evidence that optimization of the molecular structure of hyaluronic acid can be used to create eye drops that are perceived to be better than other tested tear substitutes and even patients’ own serum. This offers a new treatment perspective for patients with very severe dry eye disease.
  •  
3.
  • Oldfors Hedberg, Carola, 1969, et al. (författare)
  • Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles
  • 2020
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:8, s. 2406-2420
  • Tidskriftsartikel (refereegranskat)abstract
    • The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy