SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kovanen V.) "

Sökning: WFRF:(Kovanen V.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keskitalo, S, et al. (författare)
  • Dominant TOM1 mutation associated with combined immunodeficiency and autoimmune disease
  • 2019
  • Ingår i: NPJ genomic medicine. - : Springer Science and Business Media LLC. - 2056-7944. ; 4, s. 14-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Mutations in several proteins functioning as endolysosomal components cause monogenic autoimmune diseases, of which pathogenesis is linked to increased endoplasmic reticulum stress, inefficient autophagy, and defective recycling of immune receptors. We report here a heterozygous TOM1 p.G307D missense mutation, detected by whole-exome sequencing, in two related patients presenting with early-onset autoimmunity, antibody deficiency, and features of combined immunodeficiency. The index patient suffered from recurrent respiratory tract infections and oligoarthritis since early teens, and later developed persistent low-copy EBV-viremia, as well as an antibody deficiency. Her infant son developed hypogammaglobulinemia, autoimmune enteropathy, interstitial lung disease, profound growth failure, and treatment-resistant psoriasis vulgaris. Consistent with previous knowledge on TOM1 protein function, we detected impaired autophagy and enhanced susceptibility to apoptosis in patient-derived cells. In addition, we noted diminished STAT and ERK1/2 signaling in patient fibroblasts, as well as poor IFN-γ and IL-17 secretion in T cells. The mutant TOM1 failed to interact with TOLLIP, a protein required for IL-1 recycling, PAMP signaling and autophagosome maturation, further strengthening the link between the candidate mutation and patient pathophysiology. In sum, we report here an identification of a novel gene, TOM1, associating with early-onset autoimmunity, antibody deficiency, and features of combined immunodeficiency. Other patient cases from unrelated families are needed to firmly establish a causal relationship between the genotype and the phenotype.
  •  
2.
  •  
3.
  •  
4.
  • Hulmi, JJ, et al. (författare)
  • Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men
  • 2009
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 106:5, s. 1720-1729
  • Tidskriftsartikel (refereegranskat)abstract
    • Signaling pathways sense local and systemic signals and regulate muscle hypertrophy. The effects of whey protein ingestion on acute and long-term signaling responses of resistance exercise are not well known. Previously untrained young men were randomized into protein ( n = 9), placebo ( n = 9), and control ( n = 11) groups. Vastus lateralis (VL) muscle biopsies were taken before and 1 h and 48 h after a leg press of 5 × 10 repetitions [resistance exercise (RE)] and after 21 wk (2 times per week) of resistance training (RT). Protein (15 g of whey) or nonenergetic placebo was ingested before and after a single RE bout and each RE workout throughout the RT. The protein group increased its body mass and VL muscle thickness (measured by ultrasonography) already at week 10.5 ( P < 0.05). At week 21, the protein and placebo groups had similarly increased their myofiber size. No changes were observed in the nonexercised controls. However, the phosphorylation of p70S6K and ribosomal protein S6 (rpS6) were increased at 1 h post-RE measured by Western blotting, the former being the greatest with protein ingestion. Mammalian target of rapamycin (mTOR) phosphorylation was increased after the RE bout and RT only in the protein group, whereas the protein ingestion prevented the post-RE decrease in phosphorylated eukaryotic initiation factor 4E binding protein 1 (p-4E-BP1). Akt phosphorylation decreased after RT, whereas no change was observed in phosphorylated eukaryotic elongation factor 2. A post-RE decrease in muscle myostatin protein occurred only in the placebo group. The results indicate that resistance exercise rapidly increases mTOR signaling and may decrease myostatin protein expression in muscle and that whey protein increases and prolongs the mTOR signaling response.
  •  
5.
  •  
6.
  •  
7.
  • Kaprio, J, et al. (författare)
  • The Older Finnish Twin Cohort - 45 Years of Follow-up
  • 2019
  • Ingår i: Twin research and human genetics : the official journal of the International Society for Twin Studies. - : Cambridge University Press (CUP). - 1832-4274. ; 22:4, s. 240-254
  • Tidskriftsartikel (refereegranskat)abstract
    • The older Finnish Twin Cohort (FTC) was established in 1974. The baseline survey was in 1975, with two follow-up health surveys in 1981 and 1990. The fourth wave of assessments was done in three parts, with a questionnaire study of twins born during 1945–1957 in 2011–2012, while older twins were interviewed and screened for dementia in two time periods, between 1999 and 2007 for twins born before 1938 and between 2013 and 2017 for twins born in 1938–1944. The content of these wave 4 assessments is described and some initial results are described. In addition, we have invited twin-pairs, based on response to the cohortwide surveys, to participate in detailed in-person studies; these are described briefly together with key results. We also review other projects based on the older FTC and provide information on the biobanking of biosamples and related phenotypes.
  •  
8.
  • Mikkola, T. M., et al. (författare)
  • Influence of long-term postmenopausal hormone-replacement therapy on estimated structural bone strength: A study in discordant monozygotic twins
  • 2011
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 26:3, s. 546-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Although postmenopausal hormone-replacement therapy (HRT) is known to prevent fractures, knowledge on the influence of long-term HRT on bone strength and its determinants other than areal bone mineral density is scarce. This study used a genetically controlled design with 24 monozygotic female twin pairs aged 54 to 72 years in which one cotwin was using HRT (mean duration 8 years) and the other had never used HRT. Estimated bone strength, cross-sectional area, volumetric bone mineral density, bone mineral mass, and cross-sectional density and mass distributions were assessed in the tibial shaft, distal tibia, and distal radius with peripheral computed tomography (pQCT). In the tibial shaft, HRT users had 9% [95% confidence interval (CI) 3%-15%] higher estimated bending strength than their nonusing cotwins. Larger cortical area and higher cortical bone mineral density accounted for this difference. The cortex was larger in the HRT users in the endocortical region. In the distal tibia, estimated compressive strength was 24% (95% CI 9%-40%) higher and in the distal radius 26% (95% CI 11%-41%) higher in the HRT users than in their nonusing cotwins owing to higher volumetric bone mineral density. No difference between users and nonusers was observed in total bone cross-sectional area in any measured bone site. The added mineral mass in the HRT users was distributed evenly within and between bone sites. In postmenopausal women, long-term HRT preserves estimated bone strength systemically by preventing bone mineral loss similarly in body weight-loaded and non-weight-loaded bone. (c) 2011 American Society for Bone and Mineral Research.
  •  
9.
  • Pöllänen, E., et al. (författare)
  • Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women
  • 2011
  • Ingår i: Aging Cell. - : Wiley. - 1474-9718. ; 10:4, s. 650-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is associated with gradual decline of skeletal muscle strength and mass often leading to diminished muscle quality. This phenomenon is known as sarcopenia and affects about 30% of the over 60-year-old population. Androgens act as anabolic agents regulating muscle mass and improving muscle performance. The role of female sex steroids as well as the ability of skeletal muscle tissue to locally produce sex steroids has been less extensively studied. We show that despite the extensive systemic deficit of sex steroid hormones in postmenopausal compared to premenopausal women, the hormone content of skeletal muscle does not follow the same trend. In contrast to the systemic levels, muscle tissue of post- and premenopausal women had similar concentrations of dehydroepiandrosterone and androstenedione, while the concentrations of estradiol and testosterone were significantly higher in muscle of the postmenopausal women. The presence of steroidogenetic enzymes in muscle tissue indicates that the elevated postmenopausal steroid levels in skeletal muscle are because of local steroidogenesis. The circulating sex steroids were associated with better muscle quality while the muscle concentrations reflected the amount of infiltrated fat within muscle tissue. We conclude that systemically delivered and peripherally produced sex steroids have distinct roles in the regulation of neuromuscular characteristics during aging.
  •  
10.
  • Ronkainen, P. H., et al. (författare)
  • Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs
  • 2009
  • Ingår i: J Appl Physiol. - : American Physiological Society. - 8750-7587. ; 107:1, s. 25-33
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether long-term hormone replacement therapy (HRT) is associated with mobility and lower limb muscle performance and composition in postmenopausal women. Fifteen 54- to 62-yr-old monozygotic female twin pairs discordant for HRT were recruited from the Finnish Twin Cohort. Habitual (HWS) and maximal (MWS) walking speeds over 10 m, thigh muscle composition, lower body muscle power assessed as vertical jumping height, and maximal isometric hand grip and knee extension strengths were measured. Intrapair differences (IPD%) with 95% confidence intervals (CI) were calculated. The mean duration of HRT use was 6.9 +/- 4.1 yr. MWS was on average 7% (0.9 to 13.1%, P = 0.019) and muscle power 16% (-0.8 to 32.8%, P = 0.023) greater in HRT users than in their cotwins. Thigh muscle cross-sectional area tended to be larger (IPD% = 6%, 95% CI: -0.07 to 12.1%, P = 0.065), relative muscle area greater (IPD% = 8%, CI: 0.8 to 15.0%, P = 0.047), and relative fat area smaller (IPD% = -5%, CI: -11.3 to 1.2%, P = 0.047) in HRT users than in their sisters. There were no significant differences in maximal isometric strengths or HWS between users and nonusers. Subgroup analyses revealed that estrogen-containing therapies (11 pairs) significantly decreased total body and thigh fat content, whereas tibolone (4 pairs) tended to increase muscle cross-sectional area. This study showed that long-term HRT was associated with better mobility, greater muscle power, and favorable body and muscle composition among 54- to 62-yr-old women. The results indicate that HRT is a potential agent in preventing muscle weakness and mobility limitation in older women.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy