SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koven C.) "

Sökning: WFRF:(Koven C.)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schuur, E. A. G., et al. (författare)
  • Expert assessment of vulnerability of permafrost carbon to climate change
  • 2013
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 119:2, s. 359-374
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19-45 Pg C by 2040, 162-288 Pg C by 2100, and 381-616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.
  •  
2.
  • Fisher, J. B., et al. (författare)
  • Carbon cycle uncertainty in the Alaskan Arctic
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:15, s. 4271-4288
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects - NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project) - we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (sigma) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0+/-9.2 kgCm(-2)), then gross primary production (GPP) (0.22+/-0.50 kgCm(-2) yr(-1)), ecosystem respiration (Re) (0.23+/-0.38 kgCm(-2) yr(-1)), net primary production (NPP) (0.14+/-0.33 kgCm(-2) yr(-1)), autotrophic respiration (Ra) (0.09+/-0.20 kgCm(-2) yr(-1)), heterotrophic respiration (Rh) (0.14+/-0.20 kgCm(-2) yr(-1)), net ecosystem exchange (NEE) (-0.01+/-0.19 kgCm(-2) yr(-1)), and CH4 flux (2.52+/-4.02 g CH4 m(-2) yr(-1)). There were no consistent spatial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic and larger boreal region.
  •  
3.
  • Koven, C. D., et al. (författare)
  • A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback
  • 2015
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 373:2054
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (gamma sensitivity) of -14 to -19 PgC degrees C-1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
  •  
4.
  • Schuur, E. A. G., et al. (författare)
  • Climate change and the permafrost carbon feedback
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 520:7546, s. 171-179
  • Forskningsöversikt (refereegranskat)abstract
    • Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. Awarming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
  •  
5.
  • Wang, W., et al. (författare)
  • Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
  • 2016
  • Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 10:1, s. 287-306
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 ×104km2). However the uncertainty (1 to 128 × 104km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
  •  
6.
  • Fisher, Rosie A., et al. (författare)
  • Vegetation demographics in Earth System Models : A review of progress and priorities
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:1, s. 35-54
  • Forskningsöversikt (refereegranskat)abstract
    • Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.
  •  
7.
  • Kuhry, Peter, et al. (författare)
  • Characterisation of the Permafrost Carbon Pool
  • 2013
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 24:2, s. 146-155
  • Tidskriftsartikel (refereegranskat)abstract
    • The current estimate of the soil organic carbon (SOC) pool in the northern permafrost region of 1672 Petagrams (Pg) C is much larger than previously reported and needs to be incorporated in global soil carbon (C) inventories. The Northern Circumpolar Soil Carbon Database (NCSCD), extended to include the range 0-300cm, is now available online for wider use by the scientific community. An important future aim is to provide quantitative uncertainty ranges for C pool estimates. Recent studies have greatly improved understanding of the regional patterns, landscape distribution and vertical (soil horizon) partitioning of the permafrost C pool in the upper 3m of soils. However, the deeper C pools in unconsolidated Quaternary deposits need to be better constrained. A general lability classification of the permafrost C pool should be developed to address potential C release upon thaw. The permafrost C pool and its dynamics are beginning to be incorporated into Earth System models, although key periglacial processes such as thermokarst still need to be properly represented to obtain a better quantification of the full permafrost C feedback on global climate change.
  •  
8.
  • Mishra, U., et al. (författare)
  • Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions : a review of recent progress and remaining challenges
  • 2013
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 8:3, s. 035020-
  • Tidskriftsartikel (refereegranskat)abstract
    • The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon-climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges.
  •  
9.
  • Peng, S., et al. (författare)
  • Simulated high-latitude soil thermal dynamics during the past 4 decades
  • 2016
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0424. ; 10:1, s. 179-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr−1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr−1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr−1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of −2.80 ± 0.67 million km2 °C−1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.
  •  
10.
  • Hugelius, Gustaf, et al. (författare)
  • Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11:23, s. 6573-6593
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0-3m depth range in soils as well as for sediments deeper than 3m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3mdepth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 +/- 12 and 472 +/- 27 Pg for the 0-0.3 and 0-1 m soil depths, respectively (+/- 95% confidence intervals). Storage of SOC in 0-3m of soils is estimated to 1035 +/- 150 Pg. Of this, 34 +/- 16 PgC is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 +/- 52 Pg. In the Yedoma region, estimated SOC stocks below 3mdepth are 181 +/- 54 Pg, of which 74 +/- 20 Pg is stored in intact Yedoma (late Pleistocene ice-and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is similar to 1300 Pg with an uncertainty range of similar to 1100 to 1500 Pg. Of this, similar to 500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while similar to 800 Pg is perennially frozen. This represents a substantial similar to 300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.
  •  
11.
  • Zona, Donatella, et al. (författare)
  • Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.
  •  
12.
  • Keuper, Frida, et al. (författare)
  • Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13, s. 560-565
  • Tidskriftsartikel (refereegranskat)abstract
    • As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism-termed the rhizosphere priming effect-may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by similar to 12%, which translates to a priming-induced absolute loss of similar to 40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 degrees C.
  •  
13.
  • Li, Zhao, et al. (författare)
  • Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern lands (>50° N) since 1960s. However, the correlation between vegetation growth, temperature and seasonal amplitude of atmospheric CO2 concentration have become elusive with the slowed increasing trend of vegetation growth and weakened temperature control on CO2 uptake since late 1990s. Here, based on in situ atmospheric CO2 concentration records from the Barrow observatory site, we found a slowdown in the increasing trend of the atmospheric CO2 amplitude from 1990s to mid-2000s. This phenomenon was associated with the paused decrease in the minimum CO2 concentration ([CO2]min), which was significantly correlated with the slowdown of vegetation greening and growing-season length extension. We then showed that both the vegetation greenness and growing-season length were positively correlated with spring but not autumn temperature over the northern lands. Furthermore, such asymmetric dependences of vegetation growth upon spring and autumn temperature cannot be captured by the state-of-art terrestrial biosphere models. These findings indicate that the responses of vegetation growth to spring and autumn warming are asymmetric, and highlight the need of improving autumn phenology in the models for predicting seasonal cycle of atmospheric CO2 concentration.
  •  
14.
  • McGuire, A. D., et al. (författare)
  • An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:8, s. 3185-3204
  • Tidskriftsartikel (refereegranskat)abstract
    • Although Arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990 and 2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of flux observations and inversion models indicate that the annual exchange of CO2 between Arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that Arctic tundra has acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 A degrees C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Some of the process models indicate that this occurred because net primary production increased more in response to warming than heterotrophic respiration. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from Arctic tundra have increased from the 1990s to 2000s because of the sensitivity of CH4 emissions to warmer temperatures. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that Arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr(-1) (uncertainty between a sink of 291 Tg C yr(-1) and a source of 80 Tg C yr(-1)) and a source of CH4 to the atmosphere of 19 Tg C yr(-1) (uncertainty between sources of 8 and 29 Tg C yr(-1)). The suite of analyses conducted in this study indicate that it is important to reduce uncertainties in the observations, process-based models, and inversions in order to better understand the degree to which Arctic tundra is influencing atmospheric CO2 and CH4 concentrations. The reduction of uncertainties can be accomplished through (1) the strategic placement of more CO2 and CH4 monitoring stations to reduce uncertainties in inversions, (2) improved observation networks of ground-based measurements of CO2 and CH4 exchange to understand exchange in response to disturbance and across gradients of climatic and hydrological variability, and (3) the effective transfer of information from enhanced observation networks into process-based models to improve the simulation of CO2 and CH4 exchange from Arctic tundra to the atmosphere.
  •  
15.
  • McGuire, A. David, et al. (författare)
  • Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:7, s. 1015-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
  •  
16.
  • Mishra, Umakant, et al. (författare)
  • Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.
  •  
17.
  • Needham, Jessica F., et al. (författare)
  • Tree crown damage and its effects on forest carbon cycling in a tropical forest
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28, s. 5560-5574
  • Tidskriftsartikel (refereegranskat)abstract
    • Crown damage can account for over 23% of canopy biomass turnover in tropical forests and is a strong predictor of tree mortality; yet, it is not typically represented in vegetation models. We incorporate crown damage into the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), to evaluate how lags between damage and tree recovery or death alter demographic rates and patterns of carbon turnover. We represent crown damage as a reduction in a tree's crown area and leaf and branch biomass, and allow associated variation in the ratio of aboveground to belowground plant tissue. We compare simulations with crown damage to simulations with equivalent instant increases in mortality and benchmark results against data from Barro Colorado Island (BCI), Panama. In FATES, crown damage causes decreases in growth rates that match observations from BCI. Crown damage leads to increases in carbon starvation mortality in FATES, but only in configurations with high root respiration and decreases in carbon storage following damage. Crown damage also alters competitive dynamics, as plant functional types that can recover from crown damage outcompete those that cannot. This is a first exploration of the trade-off between the additional complexity of the novel crown damage module and improved predictive capabilities. At BCI, a tropical forest that does not experience high levels of disturbance, both the crown damage simulations and simulations with equivalent increases in mortality does a reasonable job of capturing observations. The crown damage module provides functionality for exploring dynamics in forests with more extreme disturbances such as cyclones and for capturing the synergistic effects of disturbances that overlap in space and time.
  •  
18.
  • Turetsky, Merritt R., et al. (författare)
  • Carbon release through abrupt permafrost thaw
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13:2, s. 138-
  • Tidskriftsartikel (refereegranskat)abstract
    • The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km(2) of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km(2) permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.
  •  
19.
  • Wang, Wenli, et al. (författare)
  • Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
  • 2016
  • Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 10:4, s. 1721-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.
  •  
20.
  • Xia, Jianyang, et al. (författare)
  • Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:2, s. 430-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246±6gCm-2yr-1), most models produced higher NPP (309±12gCm-2yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800gCm-2yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy