SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kramer Arthur F.) "

Sökning: WFRF:(Kramer Arthur F.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Bangsbo, Jens, et al. (författare)
  • Copenhagen Consensus statement 2019 : physical activity and ageing
  • 2019
  • Ingår i: British Journal of Sports Medicine. - London : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 53:14, s. 856-858
  • Tidskriftsartikel (refereegranskat)abstract
    • From 19th to 22nd November 2018, 26 researchers representing nine countries and a variety of academic disciplines met in Snekkersten, Denmark, to reach evidence-based consensus about physical activity and older adults. It was recognised that the term ‘older adults’ represents a highly heterogeneous population. It encompasses those that remain highly active and healthy throughout the life-course with a high intrinsic capacity to the very old and frail with low intrinsic capacity. The consensus is drawn from a wide range of research methodologies within epidemiology, medicine, physiology, neuroscience, psychology and sociology, recognising the strength and limitations of each of the methods. Much of the evidence presented in the statements is based on longitudinal associations from observational and randomised controlled intervention studies, as well as quantitative and qualitative social studies in relatively healthy community-dwelling older adults. Nevertheless, we also considered research with frail older adults and those with age-associated neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, and in a few cases molecular and cellular outcome measures from animal studies. The consensus statements distinguish between physical activity and exercise. Physical activity is used as an umbrella term that includes both structured and unstructured forms of leisure, transport, domestic and work-related activities. Physical activity entails body movement that increases energy expenditure relative to rest, and is often characterised in terms of intensity from light, to moderate to vigorous. Exercise is defined as a subset of structured physical activities that are more specifically designed to improve cardiorespiratory fitness, cognitive function, flexibility balance, strength and/or power. This statement presents the consensus on the effects of physical activity on older adults’ fitness, health, cognitive functioning, functional capacity, engagement, motivation, psychological well-being and social inclusion. It also covers the consensus on physical activity implementation strategies. While it is recognised that adverse events can occur during exercise, the risk can be minimised by carefully choosing the type of activity undertaken and by consultation with the individual’s physician when warranted, for example, when the individual is frail, has a number of co-morbidities, or has exercise-related symptoms, such as chest pain, heart arrhythmia or dizziness. The consensus was obtained through an iterative process that began with the presentation of the state-of-the-science in each domain, followed by group and plenary discussions. Ultimately, the participants reached agreement on the 30-item consensus statements.
  •  
4.
  • Cadenas-Sanchez, Cristina, et al. (författare)
  • Differences in Brain Volume between Metabolically Healthy and Unhealthy Overweight and Obese Children : The Role of Fitness
  • 2020
  • Ingår i: Journal of Clinical Medicine. - : MDPI. - 2077-0383. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to examine whether metabolically healthy overweight/obese children have greater global and regional gray matter volumes than their metabolically unhealthy peers. We further examined the association between gray matter volume and academic achievement, along with the role of cardiorespiratory fitness in these associations. A total of 97 overweight/obese children (10.0 +/- 1.2 years) participated. We classified children as metabolically healthy/unhealthy based on metabolic syndrome cut-offs. Global and regional brain volumes were assessed by magnetic resonance imaging. Academic achievement was assessed using the Woodcock-Munoz standardized test. Cardiorespiratory fitness was assessed by the 20 m shuttle run test. Metabolically healthy overweight/obese (MHO) children had greater regional gray matter volume compared to those who were metabolically unhealthy (MUO) (all p <= 0.001). A similar trend was observed for global gray matter volume (p = 0.06). Global gray matter volume was positively related to academic achievement (beta = 0.237, p = 0.036). However, all the associations were attenuated or disappeared after adjusting for cardiorespiratory fitness (p > 0.05). The findings of the present study support that metabolically healthy overweight/obese children have greater gray matter volume compared to those that are metabolically unhealthy, which is in turn related to better academic achievement. However, cardiorespiratory fitness seems to explain, at least partially, these findings.
  •  
5.
  • Esteban-Cornejo, Irene, et al. (författare)
  • Fitness, cortical thickness and surface area in overweight/obese children: The mediating role of body composition and relationship with intelligence
  • 2019
  • Ingår i: NeuroImage. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1053-8119 .- 1095-9572. ; 186, s. 771-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortical thickness and surface area are thought to be genetically unrelated and shaped by independent neurobiological events suggesting that they should be considered separately in morphometric analyses. Although the developmental trajectories of cortical thickness and surface area may differ across brain regions and ages, there is no consensus regarding the relationships of physical fitness with cortical thickness and surface area as well as for its subsequent influence on intelligence. Thus, this study examines: (i) the associations of physical fitness components (i.e., cardiorespiratory fitness, speed-agility and muscular fitness) with overall and regional cortical thickness and surface area; (ii) whether body composition indicators (i.e., body mass index, fat-free mass index and fat mass index) mediate these associations; and (iii) the association of physical fitness and cortical thickness with intelligence in overweight/obese children. A total of 101 overweight/obese children aged 8-11 years were recruited in Granada, Spain. The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted images were acquired with a 3.0 Tesla Siemens Magnetom Tim Trio system. We used FreeSurfer software version 5.3.0 to assess cortical thickness (mm) and surface area (mm(2)). The main results showed that cardiorespiratory fitness and speed-agility were related to overall cortical thickness (beta = 0.321 and beta = 0.302, respectively; both P amp;lt; 0.05), and in turn, cortical thickness was associated with higher intelligence (beta = 0.198, P amp;lt; 0.05). Muscular fitness was not related to overall cortical thickness. None of the three physical fitness components were related to surface area (p amp;gt; 0.05). The associations of cardiorespiratory fitness and speed-agility with overall cortical thickness were mediated by fat mass index (56.86% amp; 62.28%, respectively). In conclusion, cardiorespiratory fitness and speed-agility, but not muscular fitness, are associated with overall cortical thickness, and in turn, thicker brain cortex is associated with higher intelligence in overweight/obese children. Yet, none of the three physical fitness components were related to surface area. Importantly, adiposity may hinder the benefits of cardiorespiratory fitness and speed-agility on cortical thickness. Understanding individual differences in brain morphology may have important implications for educators and policy makers who aim to determine policies and interventions to maximize academic learning and occupational success later in life.
  •  
6.
  • Hou, Meijun, et al. (författare)
  • Human dopaminergic system in the exercise-cognition link
  • 2024
  • Ingår i: Trends in Molecular Medicine. - : Elsevier. - 1471-4914 .- 1471-499X.
  • Tidskriftsartikel (refereegranskat)abstract
    • While the dopaminergic system is important for cognitive processes, it is also sensitive to the influence of physical activity (PA). We summarize current evidence on whether PA-related changes in the human dopaminergic system are associated with alterations in cognitive performance, discuss recent advances, and highlight challenges and opportunities for future research.
  •  
7.
  • Jonasson, Lars, 1983-, et al. (författare)
  • Aerobic fitness influences working memory updating via the striatal dopaminergic system in older adults
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influences dopaminergic neurotransmission in the striatum as measured by positron emission tomography (PET) and the non-displacable binding potential (BPND ) of [11C]raclopride, and in turn performance on offline working-memory updating tasks. In a sample of 58 older sedentary adults undergoing a six-months exercise intervention, aerobic exercise compared to stretching, toning, and resistance training did not have a differential effect on BPND . At baseline, higher aerobic fitness levels (VO2peak ) were associated with higher BPND  in the striatum. Following the intervention, for both forms of training, we found reduced BPND , indicating increased dopamine (DA), in a cluster in the anterior striatum in individuals with larger improvements in VO2peak . This reduction in BPND  mediated a positive indirect effect of VO2peak  on working-memory updating performance. Collectively these findings implicate DA as a neurocognitive mechanism explaining the positive effects of staying physically active at an old age for working memory.
  •  
8.
  • Jonasson, Lars S., 1983-, et al. (författare)
  • Higher striatal D2-receptor availability in aerobically fit older adults but non-selective intervention effects after aerobic versus resistance training
  • 2019
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 202
  • Tidskriftsartikel (refereegranskat)abstract
    • There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influence dopaminergic neurotransmission in the striatum, and in turn performance on offline working-memory updating tasks. Dopaminergic neurotransmission was measured by positron emission tomography (PET) and the non-displacable binding potential (BPND) of [11C]raclopride, i.e. dopamine (DA) D2-receptor (D2R) availability. Fifty-four sedentary older adults underwent a six-months exercise intervention, performing either aerobic exercise or stretching, toning, and resistance active control training. At baseline, higher aerobic fitness levels (VO2peak) were associated with higher BPND in the striatum, providing evidence of a link between an objective measure of aerobic fitness and D2R in older adults. BPND decreased substantially over the intervention in both groups but the intervention effects were non-selective with respect to exercise group. The decrease was several times larger than any previously estimated annual decline in D2R, potentially due to increased endogenous DA. Working-memory was unrelated to D2R both at baseline and following the intervention. To conclude, we provide partial evidence for a link between physical exercise and DA. Utilizing a PET protocol able to disentangle both D2R and DA levels could shed further light on whether, and how, aerobic exercise impacts the dopaminergic system in older adults.
  •  
9.
  • Ortega, Francisco B., et al. (författare)
  • Effects of an Exercise Program on Brain Health Outcomes for Children With Overweight or Obesity The ActiveBrains Randomized Clinical Trial
  • 2022
  • Ingår i: JAMA Network Open. - : American Medical Association. - 2574-3805. ; 5:8
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Pediatric overweight and obesity are highly prevalent across the world, with implications for poorer cognitive and brain health. Exercise might potentially attenuate these adverse consequences. OBJECTIVES To investigate the effects of an exercise program on brain health indicators, including intelligence, executive function, academic performance, and brain outcomes, among children with overweight or obesity and to explore potential mediators and moderators of the main effects of exercise. DESIGN, SETTING, AND PARTICIPANTS All preexercise and postexercise data for this 20-week randomized clinical trial of 109 children aged 8 to 11 years with overweight or obesity were collected from November 21, 2014, to June 30, 2016, with neuroimaging data processing and analyses conducted between June 1, 2017, and December 20, 2021. All 109 children were included in the intention-to-treat analyses; 90 children (82.6%) completed the postexercise evaluation and attended 70% or more of the recommended exercise sessions and were included in per-protocol analyses. INTERVENTIONS All participants received lifestyle recommendations. The control group continued their usual routines, whereas the exercise group attended a minimum of 3 supervised 90-minute sessions per week in an out-of-school setting. MAIN OUTCOMES AND MEASURES Intelligence, executive function (cognitive flexibility, inhibition, and working memory), and academic performance were assessed with standardized tests, and hippocampal volume was measured with magnetic resonance imaging. RESULTS The 109 participants included 45 girls (41.3%); participants had a mean (SD) body mass index of 26.8 (3.6) and a mean (SD) age of 10.0 (1.1) years at baseline. In per-protocol analyses, the exercise intervention improved crystallized intelligence, with the exercise group improving from before exercise to after exercise (mean z score, 0.62 [95% CI, 0.44-0.80]) compared with the control group (mean z score, -0.10 [95% CI, -0.28 to 0.09]; difference between groups, 0.72 SDs [95% CI, 0.46-0.97]; P < .001). Total intelligence also improved significantly more in the exercise group (mean z score, 0.69 [95% CI, 0.48-0.89]) than in the control group (mean z score, 0.07 [95% CI, -0.14 to 0.28]; difference between groups, 0.62 SDs [95% CI, 0.31-0.91]; P < .001). Exercise also positively affected a composite score of cognitive flexibility (mean z score: exercise group, 0.25 [95% CI, 0.05-0.44]; control group, -0.17 [95% CI, -0.39 to 0.04]; difference between groups, 0.42 SDs [95% CI, 0.13-0.71]; P = .005). These main effects were consistent in intention-to-treat analyses and after multiple-testing correction. There was a positive, small-magnitude effect of exercise on total academic performance (mean z score: exercise group, 0.31 [95% CI, 0.18-0.44]; control group, 0.10 [95% CI, -0.04 to 0.24]; difference between groups, 0.21 SDs [95% CI, 0.01-0.40]; P = .03), which was partially mediated by cognitive flexibility. Inhibition, working memory, hippocampal volume, and other brain magnetic resonance imaging outcomes studied were not affected by the exercise program. The intervention increased cardiorespiratory fitness performance as indicated by longer treadmill time to exhaustion (mean z score: exercise group, 0.54 [95% CI, 0.27-0.82]; control group, 0.13 [95% CI, -0.16 to 0.41]; difference between groups, 0.42 SDs [95% CI, 0.01-0.82]; P = .04), and these changes in fitness mediated some of the effects (small percentage of mediation [approximately 10%-20%]). The effects of exercise were overall consistent across the moderators tested, except for larger improvements in intelligence among boys compared with girls. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, exercise positively affected intelligence and cognitive flexibility during development among children with overweight or obesity. However, the structural and functional brain changes responsible for these improvements were not identified.
  •  
10.
  • Yuh, Esther L, et al. (författare)
  • Pathological computed tomography features associated with adverse outcomes after mild traumatic brain injury : A TRACK-TBI study with external validation in CENTER-TBI.
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 78:9, s. 1137-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood.OBJECTIVE: To identify pathological CT features associated with adverse outcomes after mTBI.DESIGN, SETTING, AND PARTICIPANTS: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021.EXPOSURES: Acute nonpenetrating head trauma.MAIN OUTCOMES AND MEASURES: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months.RESULTS: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study.CONCLUSIONS AND RELEVANCE: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
annan publikation (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Riklund, Katrine (2)
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Diaz, Sandra (1)
Vertessy, Beata G. (1)
visa fler...
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Bond-Lamberty, Ben (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Suo, Chao (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Nyberg, Lars (1)
Swärd, Karl (1)
Nilsson, Per (1)
Axelsson, Jan, 1966- (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Rosand, Jonathan (1)
Isaac, Marney (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
visa färre...
Lärosäte
Umeå universitet (6)
Karolinska Institutet (5)
Linköpings universitet (4)
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
visa fler...
Örebro universitet (1)
Lunds universitet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy