SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Krimm H. A.) "

Search: WFRF:(Krimm H. A.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Evans, P. A., et al. (author)
  • Swift and NuSTAR observations of GW170817 : Detection of a blue kilonova
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1565-1569
  • Journal article (peer-reviewed)abstract
    • With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counter part of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (approximate to 0.03 solar masses) wind-driven outflow with moderate electron fraction (Y-e approximate to 0.27). Combined with the x-ray limits, we favor an observer viewing angle of approximate to 30 degrees away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a gamma-ray burst afterglow).
  •  
2.
  • Tanvir, N. R., et al. (author)
  • A γ-ray burst at a redshift of z~8.2
  • 2009
  • In: Nature. - 0028-0836 .- 1476-4687. ; 461, s. 1254-1257
  • Journal article (peer-reviewed)abstract
    • Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z>20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB090423 lies at a redshift of z~8.2, implying that massive stars were being produced and dying as GRBs ~630Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.
  •  
3.
  • Russell, T. D., et al. (author)
  • Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 883:2
  • Journal article (peer-reviewed)abstract
    • MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array, as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved toward the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to = 0.69 c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs >2.5 days before the first appearance of a possible type-B QPO.
  •  
4.
  • Aharonian, Felix, et al. (author)
  • Atmospheric gas dynamics in the Perseus cluster observed with Hitomi
  • 2018
  • In: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 70:2
  • Journal article (peer-reviewed)abstract
    • Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100 kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches a maxima of approximately 200 km s(-1) toward the central active galactic nucleus (AGN) and toward the AGN inflated northwestern ghost bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100 km s(-1). We also detect a velocity gradient with a 100 km s(-1) amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10% of the thermal pressure support in the cluster core. The well-resolved, optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100 kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift of the brightest cluster galaxy NGC 1275.
  •  
5.
  • Chakraborti, Sayan, et al. (author)
  • A MISSING-LINK IN THE SUPERNOVA-GRB CONNECTION : THE CASE OF SN 2012ap
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 805:2
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.
  •  
6.
  • Rushton, A. P., et al. (author)
  • Resolved, expanding jets in the Galactic black hole candidate XTE J1908+094
  • 2017
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 468:3, s. 2788-2802
  • Journal article (peer-reviewed)abstract
    • Black hole X-ray binaries undergo occasional outbursts caused by changing inner accretion flows. Here we report high angular resolution radio observations of the 2013 outburst of the black hole candidate X-ray binary system XTE J1908+094, using data from the Very Long Baseline Array and European VLBI Network. We show that following a hard-to-soft state transition, we detect moving jet knots that appear asymmetric in morphology and brightness, and expand to become laterally resolved as they move away from the core, along an axis aligned approximately -11. east of north. We initially see only the southern component, whose evolution gives rise to a 15-mJy radio flare and generates the observed radio polarization. This fades and becomes resolved out after 4 days, after which a second component appears to the north, moving in the opposite direction. From the timing of the appearance of the knots relative to the X-ray state transition, a 90. swing of the inferred magnetic field orientation, the asymmetric appearance of the knots, their complex and evolving morphology, and their low speeds, we interpret the knots as working surfaces where the jets impact the surrounding medium. This would imply a substantially denser environment surrounding XTE J1908+094 than has been inferred to exist around the microquasar sources GRS 1915+105 and GRO J1655-40.
  •  
7.
  • Margutti, R., et al. (author)
  • INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS : APPLICATION TO SN2011fe
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 751:2, s. 134-
  • Journal article (peer-reviewed)abstract
    • We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a normal SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate (M) over dot < 2 x 10(-9) M-circle dot yr(-1) (3 sigma c.l.) for wind velocity v(w) = 100 km s(-1). Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if greater than or similar to 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n(CSM) < 150 cm(-3)) for 2 x 10(15) less than or similar to R less than or similar to 5 x 10(16) cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view