SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kroes G. J.) "

Search: WFRF:(Kroes G. J.)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Wright, G. S., et al. (author)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build
  • 2015
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 595-611
  • Journal article (peer-reviewed)abstract
    • The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 mu m. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar to 100) spectroscopy, and medium-resolving power (R similar to 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of
  •  
3.
  • Churchard, A. J., et al. (author)
  • A multifaceted approach to hydrogen storage
  • 2011
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 13:38, s. 16955-16972
  • Journal article (peer-reviewed)abstract
    • The widespread adoption of hydrogen as an energy carrier could bring significant benefits, but only if a number of currently intractable problems can be overcome. Not the least of these is the problem of storage, particularly when aimed at use onboard light-vehicles. The aim of this overview is to look in depth at a number of areas linked by the recently concluded HYDROGEN research network, representing an intentionally multi-faceted selection with the goal of advancing the field on a number of fronts simultaneously. For the general reader we provide a concise outline of the main approaches to storing hydrogen before moving on to detailed reviews of recent research in the solid chemical storage of hydrogen, and so provide an entry point for the interested reader on these diverse topics. The subjects covered include: the mechanisms of Ti catalysis in alanates; the kinetics of the borohydrides and the resulting limitations; novel transition metal catalysts for use with complex hydrides; less common borohydrides; protic-hydridic stores; metal ammines and novel approaches to nano-confined metal hydrides.
  •  
4.
  • Hellman, A, et al. (author)
  • Predicting catalysis : understanding ammonia synthesis from first-principles calculations
  • 2006
  • In: Journal of Physical Chemistry B. - 1520-6106 .- 1520-5207. ; 110, s. 17719-17735
  • Journal article (peer-reviewed)abstract
    • Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N(2) dissociation, H(2) dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.
  •  
5.
  • Wells, M., et al. (author)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer
  • 2015
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 646-664
  • Journal article (peer-reviewed)abstract
    • We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 x 7.7 '' in extent and at spectral resolving powers ranging from 1300 to 3700. Each channel includes an all-reflective integral field unit (IFU): an "image slicer" that reformats the input field for presentation to a grating spectrometer. Two 1024 x 1024 focal plane detector arrays record the output spectral images with an instantaneous spectral coverage of approximately one third of the full wavelength range of each channel. The full 5-28.5 mu m spectrum is then obtained by making three exposures using gratings and pass-band-determining filters that are selected using just two three-position mechanisms. The expected on-orbit optical performance is presented, based on testing of the MIRI Flight Model and including spectral and spatial coverage and resolution. The point spread function of the reconstructed images is shown to be diffraction limited and the optical transmission is shown to be consistent with the design expectations.
  •  
6.
  • Valdes, A., et al. (author)
  • Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory
  • 2012
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 14:1, s. 49-70
  • Research review (peer-reviewed)abstract
    • An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO(2) functionalized with gold nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals.
  •  
7.
  • Wiedner, M.C., et al. (author)
  • Heterodyn receiver for the Origins Space Telescope concept 2
  • 2018
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Conference paper (peer-reviewed)abstract
    • The Origins Space Telescope (OST) is a NASA study for a large satellite mission to be submitted to the 2020 Decadal Review. The proposed satellite has a fleet of instruments including the HEterodyne Receivers for OST (HERO). HERO is designed around the quest to follow the trail of water from the ISM to disks around protostars and planets. HERO will perform high-spectral resolution measurements with 2x9 pixel focal plane arrays at any frequency between 468GHz to 2,700GHz (617 to 111 μm). HERO builds on the successful Herschel/HIFI heritage, as well as recent technological innovations, allowing it to surpass any prior heterodyne instrument in terms of sensitivity and spectral coverage.
  •  
8.
  • Wiedner, M.C., et al. (author)
  • Heterodyne Receiver for Origins
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 μm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared/Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research.
  •  
9.
  • Diaz, C, et al. (author)
  • Multidimensional effects on dissociation of N2 on Ru(0001)
  • 2006
  • In: Physical Review Letters. - 0031-9007. ; 96:9, s. 096102-
  • Journal article (peer-reviewed)abstract
    • The applicability of the Born-Oppenheimer approximation to molecule-metal surface reactions is presently a topic of intense debate. We have performed classical trajectory calculations on a prototype activated dissociation reaction, of N2 on Ru(0001), using a potential energy surface based on density functional theory. The computed reaction probabilities are in good agreement with molecular beam experiments. Comparison to previous calculations shows that the rotation of N2 and its motion along the surface affect the reactivity of N2 much more than nonadiabatic effects.
  •  
10.
  •  
11.
  • Nilsson, C. L., et al. (author)
  • Use of ENCODE Resources to Characterize Novel Proteoforms and Missing Proteins in the Human Proteome
  • 2015
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:2, s. 603-608
  • Journal article (peer-reviewed)abstract
    • We describe the utility of integrated strategies that employ both translation of ENCODE data and major proteomic technology pillars to improve the identification of the "missing proteins", novel proteoforms, and PTMs. On one hand, databases in combination with bioinformatic tools are efficiently utilized to establish microarray-based transcript analysis and supply rapid protein identifications in clinical samples. On the other hand, sequence libraries are the foundation of targeted protein identification and quantification using mass spectrometric and immunoaffinity techniques. The results from combining proteoENCODEdb searches with experimental mass spectral data indicate that some alternative splicing forms detected at the transcript level are in fact translated to proteins. Our results provide a step toward the directives of the C-HPP initiative and related biomedical research.
  •  
12.
  • Vincent, Jonathan, et al. (author)
  • Dissociative chemisorption of H 2 on Pt(111) : isotope effect and effects of the rotational distribution and energy dispersion
  • 2004
  • In: Surface Science. - : Elsevier BV. - 0039-6028 .- 1879-2758. ; 573:3, s. 433-445
  • Journal article (peer-reviewed)abstract
    • Six-dimensional quantum dynamics calculations on dissociative scattering of H2 and D2 from Pt(111) are performed.The six-dimensional potential energy surface used was generated using density functional theory employingthe generalized gradient approximation. The isotope effect, the effect of widening the rotational distribution on the dissociationprobability and the effect of the energy dispersion are investigated, as they are possible reasons for a discrepancybetween previous theoretical work and molecular beam experiments. It was found that these effects cannot explainthe differences between the theoretical and experimental results.
  •  
13.
  • Vincent, Jonathan, et al. (author)
  • Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Ru(0001)
  • 2005
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 122:4, s. 44701-
  • Journal article (peer-reviewed)abstract
    • Six-dimensional quantum dynamics calculations on dissociative chemisorption of H(2) on Ru(0001) are performed. The six-dimensional potential energy surface is generated using density functional theory. Two different generalized gradient approximations are used, i.e., RPBE and PW91, to allow the results to be compared. The dissociation probability for normally incident H(2) on a clean Ru(0001) surface is calculated. Large differences between the reaction probabilities calculated using the RPBE and PW91 are seen, with the PW91 results showing a much narrower reaction probability curve and a much higher reactivity. Using the reaction probabilities and assuming normal energy scaling reaction rates are generated for temperatures between 300 and 800 K. The rate generated using the PW91 results is higher by about a factor 5 than the rate based on the RPBE results in the range of temperatures relevant to ammonia production.
  •  
14.
  • Arasa, C, et al. (author)
  • Molecular dynamics simulations of D2O ice photodesorption.
  • 2011
  • In: The Journal of chemical physics. - : AIP Publishing. - 1089-7690 .- 0021-9606. ; 134:16
  • Journal article (peer-reviewed)abstract
    • Molecular dynamics (MD) calculations have been performed to study the ultraviolet (UV) photodissociation of D(2)O in an amorphous D(2)O ice surface at 10, 20, 60, and 90 K, in order to investigate the influence of isotope effects on the photodesorption processes. As for H(2)O, the main processes after UV photodissociation are trapping and desorption of either fragments or D(2)O molecules. Trapping mainly takes place in the deeper monolayers of the ice, whereas desorption occurs in the uppermost layers. There are three desorption processes: D atom, OD radical, and D(2)O molecule photodesorption. D(2)O desorption takes places either by direct desorption of a recombined D(2)O molecule, or when an energetic D atom produced by photodissociation kicks a surrounding D(2)O molecule out of the surface by transferring part of its momentum. Desorption probabilities are calculated for photoexcitation of D(2)O in the top four monolayers and are compared quantitatively with those for H(2)O obtained from previous MD simulations of UV photodissociation of amorphous water ice at different ice temperatures [Arasa et al., J. Chem. Phys. 132, 184510 (2010)]. The main conclusions are the same, but the average D atom photodesorption probability is smaller than that of the H atom (by about a factor of 0.9) because D has lower kinetic energy than H, whereas the average OD radical photodesorption probability is larger than that of OH (by about a factor of 2.5-2.9 depending on ice temperature) because OD has higher translational energy than OH for every ice temperature studied. The average D(2)O photodesorption probability is larger than that of H(2)O (by about a factor of 1.4-2.3 depending on ice temperature), and this is entirely due to a larger contribution of the D(2)O kick-out mechanism. This is an isotope effect: the kick-out mechanism is more efficient for D(2)O ice, because the D atom formed after D(2)O photodissociation has a larger momentum than photogenerated H atoms from H(2)O, and D transfers momentum more easily to D(2)O than H to H(2)O. The total (OD + D(2)O) yield has been compared with experiments and the total (OH + H(2)O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D(2)O ice than when we compare with calculated yields for H(2)O ice.
  •  
15.
  • Nilsson, C. L., et al. (author)
  • Chromosome 19 Annotations with Disease Speciation: A First Report from the Global Research Consortium
  • 2013
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:1, s. 134-149
  • Journal article (peer-reviewed)abstract
    • A first research development progress report of the Chromosome 19 Consortium with members from Sweden, Norway, Spain, United States, China and India, a part of the Chromosome-centric Human Proteome Project (C-HPP) global initiative, is presented (http://www.c-hpp.org). From the chromosome 19 peptide-targeted library constituting 6159 peptides, a pilot study was conducted using a subset with 125 isotope-labeled peptides. We applied an annotation strategy with triple quadrupole, ESI-Qtrap, and MALDI mass spectrometry platforms, comparing the quality of data within and in between these instrumental set-ups. LC–MS conditions were outlined by multiplex assay developments, followed by MRM assay developments. SRM was applied to biobank samples, quantifying kallikrein 3 (prostate specific antigen) in plasma from prostate cancer patients. The antibody production has been initiated for more than 1200 genes from the entire chromosome 19, and the progress developments are presented. We developed a dedicated transcript microarray to serve as the mRNA identifier by screening cancer cell lines. NAPPA protein arrays were built to align with the transcript data with the Chromosome 19 NAPPA chip, dedicated to 90 proteins, as the first development delivery. We have introduced an IT-infrastructure utilizing a LIMS system that serves as the key interface for the research teams to share and explore data generated within the project. The cross-site data repository will form the basis for sample processing, including biological samples as well as patient samples from national Biobanks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view