SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kruezi U.) "

Sökning: WFRF:(Kruezi U.)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
5.
  •  
6.
  •  
7.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
33.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
34.
  • Frassinetti, Lorenzo, et al. (författare)
  • Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Three dimensionless scans in the normalized Larmor radius rho*, normalized collisionality nu* and normalized plasma pressure beta have been performed in JET with the ITER-like wall (JET-ILW). The normalized energy confinement and the thermal diffusivity exhibit a scaling with rho* consistent with the earlier results obtained in the carbon wall JET (JET-C) and with a gyro-Bohm scaling. In the pedestal, experimental results show that the stability is not dependent on rho*, qualitatively in agreement with the peeling-ballooning (P-B) model. The nu* dimensionless scaling shows that JET-ILW normalized confinement has a stronger dependence on collisionality than JET-C. This leads to a reduction of the difference in the confinement between JET-ILW and JET-C to approximate to 10% at low nu*. The pedestal stability shows an improvement with decreasing nu*. This is ascribed to the increase of the bootstrap current, to the reduction of the pedestal width and to the reduction of the relative shift between pedestal density and temperature position. The beta dimensionless scan shows that, at low collisionality, JET-ILW normalized confinement has no clear dependence with beta, in agreement with part of the earlier scalings. At high collisionality, a reduction of the normalized confinement with increasing beta is observed. This behaviour is driven mainly by the pedestal where the stability is reduced with increasing beta. The P-B analysis shows that the stability reduction with increasing beta at high nu* is due to the destabilizing effect of the increased relative shift.
  •  
35.
  • Giroud, C., et al. (författare)
  • Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:11, s. 113025-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.
  •  
36.
  • Joffrin, E., et al. (författare)
  • Impact of divertor geometry on H-mode confinement in the JET metallic wall
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experiments with the ITER-like wall have demonstrated that changes in divertor strike point position are correlated with strong modification of the global energy confinement. The impact on energy confinement is observable both on the pedestal confinement and core normalised gradients. The corner configuration shows an increased core density gradient length and ion pressure indicating a better ion confinement. The study of neutral re-circulation indicates the neutral pressure in the main chamber varies inversely with the energy confinement and a correlation between the pedestal total pressure and the neutral pressure in the main chamber can be established. It does not appear that charge exchange losses nor momentum losses could explain this effect, but it may be that changes in edge electric potential are playing a role at the plasma edge. This study emphasizes the importance of the scrape-off layer (SOL) conditions on the pedestal and core confinement.
  •  
37.
  • Maddison, G. P., et al. (författare)
  • Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:7, s. 073016-
  • Tidskriftsartikel (refereegranskat)abstract
    • The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q(95) approximate to 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is approximate to 30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes so far will be readdressed in future campaigns to continue progress towards a fully integrated scenario suitable for D-T experiments on JET and for 'baseline' operation on ITER. The diverse changes in behaviour between all-C and ILW contexts demonstrate essentially the strong impact which boundary conditions and intrinsic impurities can have on tokamak-plasma states.
  •  
38.
  •  
39.
  • Stefániková, Estera, et al. (författare)
  • Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (d) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.
  •  
40.
  •  
41.
  • Wiesen, S., et al. (författare)
  • On the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall
  • 2018
  • Ingår i: Nuclear Materials and Energy. - : ELSEVIER. - 2352-1791. ; 17, s. 174-181
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of the finite grid size in SOLPS-ITER edge plasma simulations is assessed for JET H-mode discharges with a metal wall. For a semi-horizontal divertor configuration it is shown that the separatrix density is at least 30% higher when a narrow scrape-off layer (SOL) grid width is chosen in SOLPS-ITER compared to the case for which the SOL grid width is maximised. The density increase is caused by kinetic neutrals being not confined inside the divertor region because of the reduced extent of the plasma grid. In this case, an enhanced level of reflections of energetic neutrals at the low-field side (LFS) metal divertor wall is observed. This leads to a shift of the ionisation source further upstream which must be accounted for as a numerical artefact. An overestimate in the cooling at the divertor entrance is observed in this case, identified by a reduced heat flux decay parameters lambda(div)(q). Otherwise and further upstream the mid-plane heat decay length lambda(q) parameter is not affected by any change in divertor dissipation. This confirms the assumptions made for the ITER divertor design studies, i.e. that lambda(q) upstream is essentially set by the assumptions for the ratio radial to parallel heat conductivity. It is also shown that even for attached conditions the decay length relations lambda(ne)>lambda(Te)>lambda(q) hold in the near-SOL upstream. Thus for interpretative edge plasma simulations one must take the (experimental) value of lambda(ne) into account, rather than lambda(q), as the former actually defines the required minimum upstream SOL grid extent.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy